

Raman study of spin excitations in hexagonal *R*MnO₃

October 16, 2019 고려대학교 물리학과

In-Sang Yang Ewha Womans University Seoul, Korea

In-Sang Yang

Education

1988.8 PhD, University of Illinois at Urbana-Champaign (A.C. Anderson) 1986.5 MS, University of Illinois at Urbana-Champaign (A.C. Anderson) 1983.2 BS, Seoul National University, Department of Physics **PhD Thesis:**

Phonon-dislocation interaction in LiF and KCl crystals

npaign

Professional Experience:

- 2000. 3 present : Professor, Department of Physics and Division of nano-sciences, Ewha Womans University
- 2009.3 2010. 2 : Director, Basic Science Research Institute, Ewha Womans University
- 2005. 5 2008. 4 : Editor, Journal of the Korean Physical Society.
- 2002. 3 2004. 2: Chief Secretary, Condensed Matter Division, Korean Physical Societ
- 1998. 8 2002. 2 : Visiting Research Associate Professor, Physics, University of Illinois
- 1994.9 1999.8: Associate Professor, Department of Physics, Ewha Womans Universit
- 1990.9 1994.8 : Assistant Professor, Department of Physics, Ewha Womans Universit
- 1988.9 1990.8 : IBM Thomas J. Watson Research Center, Post-Docto

Awards:

Korean Government Fellowship for Studying Abroad, 1983 Award for Prospective Young Scientists, Korean Physical Society, 1996 Ewha Best Lecturer Award, 2006

CONTRIBUTORS

Nguyen Thi Minh Hien, Jiyeon Nam, Seung Kim, Nguyen Thi Huyen

Department of Physics, Ewha Womans University, Seoul, Korea

Xiang-Bai Chen Wuhan Institute of Technology, Wuhan, China

T. W. Noh CCES, IBS, Department of Physics and Astronomy, Seoul National University, Seoul, Korea

B. K. Cho *Gwangju Institute of Science and Technology, Gwangju, Korea*

S. W. Cheong Rutgers Center for Emergent Materials and Department of Physics, New Jersey, USA

Young Mee Jung Department of Chemistry, Kangwon National University, Chunchon, Korea

Probing methods

Low energy excitation = h(v-v')

-from the Wikimedia Commons.-

Raman Spectroscopy

Jobin Yvon T64000 spectrometer

Raman Effect vs Fluorescence

Raman spectroscopy $hv \rightarrow hv'$; excitation = h(v-v')Fluorescence spectroscopy $hv \rightarrow hv'$; excitation = hv'

Raman spectroscopy can probe :

- Vibrational states
- Rotational states
- Electronic states
- Charge ordering (Superconducting gap, 2Δ)
- Spin ordering (spin waves)

A magnon is a <u>quasiparticle</u>, a <u>collective excitation</u> of the <u>electrons spin</u> structure in a <u>crystal lattice</u>. In the equivalent wave picture of quantum mechanics, a magnon can be viewed as a quantized <u>spin wave</u>. Magnons carry a fixed amount of <u>energy</u> and <u>lattice momentum</u>, and are spin-1, indicating they obey boson behavior. - From Wikipedia, the free encyclopedia -

1-D Analogy

2-D Analogy

Quantum Memories

- Superconducting Nano devices
- Nuclear spin decoherence time

Require strong light-matter interaction

- Atomic states natural candidates
- Solid state systems = scalability, integration into existing technology Pr³⁺:Y₂SiO₅ crystal : solid-state spin-wave optical quantum memory -Mustafa Gündoğan et al., Phys. Rev. Lett. 114, 230501 (2015)

Precession of Magnetic Moments – Spin Wave

Magneto-Mechanical Resonator

Adopted from the Talk of Cho, Sung Un, Department of Physics and Astronomy, Seoul National University (July 4, 2017)

Spin Wave

a reliable channel of the light-matter interaction:

excitation/detection (write/read) in the Quantum Memories

0. Brief history of Raman studies of spin excitations in hexagonal *R*MnO₃ system

Spin excitations in hexagonal $RMnO_3$ (R = rare earths)

+ First found in hexagonal HoMnO₃ thin films, using 647 nm excitation source.
 Raman scattering studies of the magnetic ordering in hexagonal HoMnO₃ thin films, Nguyen Thi Minh Hien,
 Xiang-Bai Chen, Luc Huy Hoang, D, Lee, S.-Y. Jang, T. W. Noh, and <u>In-Sang Yang</u>, Journal of Raman
 Spectroscopy 41, 983-988 (2010)

+ The spin excitations were resonant in very narrow range of excitation energy. Resonant A(1) phonon and four-magnon Raman scattering in hexagonal HoMnO₃ thin film, Xiang-Bai Chen, Nguyen Thi Minh Hien, D Lee, S-Y Jang, T W Noh, and <u>In-Sang Yang</u>, New Journal of Physics 12, 073046 (2010)

+ The spin excitations were found in other $RMnO_3$ (R= rare earths).

Raman scattering studies of hexagonal rare-earth $RMnO_3$ (R = Tb, Dy, Ho, Er) thin films, Nguyen Thi Minh Hien, Su-Young Oh, Xiang-Bai Chen, D. Lee, S.-Y. Jang, T. W. Noh, and <u>In-Sang Yang</u>, Journal of Raman Spectroscopy 42, 1774-1779 (2011)

+ We could get the spin-exchange interaction integral J values from Raman!
 Spin exchange interactions in hexagonal manganites RMnO₃ (R = Tb, Dy, Ho, Er) epitaxial thin films, Xiang-Bai
 Chen, Nguyen Thi Minh Hien, D. Lee, S.-Y. Jang, T. W. Noh, and <u>In-Sang Yang</u>, App.Phys.Lett. 99, 052506 (2011)

Magnons in hexagonal $RMnO_3$ (R = rare earths)

+ Spin excitations in Mn⁺³ sublattices of hexagonal *R*MnO₃ can be selectively excited!
-> Raman study is much more useful in studying the magnetic transitions due to changes in Mn-spin interactions than magnetization measurements.
"Study of spin-ordering and spin-reorientation transitions in hexagonal manganites through Raman spectroscopy", Xiang-Bai Chen, Nguyen Thi Minh Hien, Kiok Han, Ji-Yeon Nam, Nguyen Thi Huyen, Seong-Il Shin, Xueyun Wang, S. W. Cheong, D. Lee, T. W. Noh, N. H. Sung, B. K. Cho, and In-Sang Yang, Scientific Reports 5, 13366 (2015).

+ Spin excitations tell us about the spin-structural phase transition in hexagonal *R*MnO₃.

"Correlation between magnon and magnetic symmetries of hexagonal RMnO₃ (R = Er, Ho, Lu), Thi Minh Hien Nguyen, Thi Huyen Nguyen, Xiang-Bai Chen, Yeonju Park, Young Mee Jung, D. Lee, T.W. Noh, Sang-Wook Cheong, and In-Sang Yang, Journal of Molecular Structure 1124, 103-109 (2016).

+ We suggested the spin flip mechanism in hexagonal LuMnO₃ single crystal.

"Spin wave and spin flip in hexagonal LuMnO₃ single crystal", Xiang-Bai Chen, Peng-Cheng Guo, Nguyen Thi Huyen, Seung Kim, <u>In-Sang Yang</u>, Xueyun Wang, Sang-Wook Cheong, Appl. Phys. Lett. **110**, 122405 (2017).

+ Dr. Hien investigated two-magnons in other AIAO material ($Cd_2Os_2O_7$)

"Two-Magnon Scattering in 5d All-In-All-Out Pyrochlore Magnet Cd₂Os₂O₇", Nguyen Thi Minh Hien, Luke J. Sandilands, C.H. Sohn, C. H. Kim, Aleksander L Wysocki, <u>In-Sang Yang</u>, S. J. Moon, Jae-Hyeon Ko, Z. Hiroi, J. Yamaura, and Tae Won Noh, Nature Communications 8, 251 (2017).

-> The spin excitations are very important, useful quantity !

I. Review of RMnO₃: why hexagonal RMnO₃?

 T_N

 T_{FE}

T_{AFE}

	Ferroelectric T _{FE} (K)	$P_r (\mu C/cm^2)$	Anti-FM T _N (K)	netic		'ic	
Ortho $- RMnO_3$ ($R = Dy, Tb, Gd$)	~ 24	~ 0.2	~ 40	lectric romagi	electric agnetic	roelecti agnetic	ectric agnetic
$Hexa - RMnO_3$ $(R = Ho, Y,)$	> 900	~ 5.6	~ 100	Ferroe Antifei	Ferro Param	Antifer Param	Parael Param

I. Review of RMnO₃ : *Structure & Raman active modes*

II. Samples and Experiments: Raman experiments

Hexagonal HoMnO₃ and ErMnO₃ thin films: were grown on Pt (111)// Al2O3 (0001) substrates by laser ablation method. All the thin films were grown epitaxially with their c axis perpendicular to the film surface

Hexagonal LuMnO₃ single crystal was grown using the traveling floating zone method. Platelet single crystal sample was cleaved perpendicular to the *c* axis.

Raman experiments

- + Objective lenses: ×50 ultra long working distance (ULWD)
- + Focus length: 8mm.

A closed-cycle helium cryostat was used to vary the sample temperatures from 13 to 300K.

1. The magnetic ordering in hexagonal HoMnO₃ thin film

 Raman scattering studies of the magnetic ordering in hexagonal HoMnO₃ thin films, Nguyen Thi Minh Hien, Xiang-Bai Chen, Luc Huy Hoang, D, Lee, S.-Y. Jang, T. W. Noh, and In-Sang Yang, Journal of Raman Spectroscopy 41, 983-988 (2010)

2. Resonant A(1) phonon and four-magnon Raman scattering in hexagonal HoMnO₃ thin film, Xiang-Bai Chen, Nguyen Thi Minh Hien, D Lee, S-Y Jang, T W Noh, and In-Sang Yang, New Journal of Physics 12, 073046 (2010).

Raman spectra of hexagonal HoMnO₃ and $Pt(111)//Al_2O_3$ (0001) substrate at 13 K in different configurations.

- + 680cm⁻¹: A₁ phonon
 + Broad peak 1280 cm⁻¹:
 2nd order of A₁ phonon
- + Several broad peaks : ~510, ~760, ~ 955,~ 1120 and ~1410 cm⁻¹
- cross polarization only!

Magnon ??

In cross polarization scattering @ 13 K

Confirms:

- + Raman origin, not PL!
- + Strongly resonant at 671nm (~1.8 eV)

III. Raman results: Spin excitation peaks

T dependence-Raman spectra of a hexagonal $HoMnO_3$ – cross polarization configurations

- \Rightarrow shows an inflection point at T=67 K ~T_N
- \Rightarrow Related with Magnetic Ordering

T≯: these broad peaks decrease > the phonon modes, and are disappearing above T_N

T dependence of the difference spectra

The electronic conductivity of LuMnO3. Phys. Rev. Lett. **91**, 027203 (2003) • Peak at ~ 1.7 eV: on-site Mn d-d transition.

• Broad band centered at ~ 5 eV: charge transfer transition from the hybridized oxygen p levels to the Mn d levels.

• The on-site Mn d-d transition at ~ 1.7 eV shifts ~ 0.15 eV with temperature.

• The shift is mainly caused by the effects of the exchange interaction between the Mn ions.

Resonant effect

671nm	1.85eV
647nm	1.92eV
532nm	2.33eV

Spin excitation peak (760 cm⁻¹) resonant effect is related to Mn d-d transition.

> Xiang-Bai Chen *et al.*, *New J. Phys.*, **12**, 073046(2010). Xiang-Bai Chen *et al. Appl. Phys. Lett.* **110**, 122405 (2017).

2. Rare-earth *R* dependence of *R*MnO₃ (*R*=Tb, Dy, Ho, Er) thin films

3. Raman scattering studies of hexagonal rare-earth $RMnO_3$ (R = Tb, Dy, Ho, Er) thin films, Nguyen Thi Minh Hien, Su-Young Oh, Xiang-Bai Chen, D. Lee, S.-Y. Jang, T. W. Noh, and In-Sang Yang, Journal of Raman Spectroscopy 42, 1774-1779 (2011).

4. Spin exchange interactions in hexagonal manganites $RMnO_3$ (R = Tb, Dy, Ho, Er) epitaxial thin films, Xiang-Bai Chen, Nguyen Thi Minh Hien, D. Lee, S.-Y. Jang, T. W. Noh, and In-Sang Yang, App.Phys.Lett. 99, 052506 (2011).

Polarized Raman spectra of hexagonal $RMnO_3$ (R = Tb, Dy, Ho, Er) thin films at 13 K obtained in the Z(XY)Z- configuration.

T dependent (13K – 150K) Raman spectra of hexagonal $RMnO_3$ (R = Tb, Dy, Ho, Er) thin films obtained in the Z(XY)Z- configuration.

 T_N - *R* dependence: our thin films < single crystals.

 \Rightarrow the lattice constant *a* varies slower with the radius of *R* ion comparing with the single crystals

Fig 8: The R ionic radius dependence of T_N for our thin films and the single crystals

Below T_N the Mn spins order antiferromagnetically in a noncollinear 120° spin structure. (All-In-All-Out structure)

Spin states of some transition ions

3d level electron	$3d^4$	3d ⁵	3d ⁶	3d ⁷
TM ions	Mn ³⁺	Mn ²⁺ , Fe ³⁺	Fe ²⁺	Co ²⁺ , Ni ³⁺
Weak				
Crystal Field				
High Spin State	S=2	S=5/2	S=2	S=3/2
Strong				
Crystal Field				
Low Spin State	S=0	S=1/2	S=0	S=1/2

Strong Crystal Field Low Spin State S=0 Weak Crystal Field High Spin State S=2

III. Raman results: Spin excitation peaks

 $T < T_N$

 $H = J_1 \sum_{\langle i, i \rangle} (S_i \cdot S_j) + J_2 \sum_{\langle i, k \rangle} (S_i \cdot S_k)$

 J_1 : intratrimer Mn-Mn spin interaction J_2 : intertrimer Mn-Mn spin interaction

The 4-spin flipping magnon

4-magnon

The 6-spin flipping magnon

6-magnon

spin flipping of 3 Mn³⁺ ions in 1 triangle and 1 Mn³⁺ ion in the neighboring triangle

spin flipping of 6 Mn³⁺ ions in 2 neighboring triangle $13J_1 + 26J_2$: **96.2meV** ~770 cm⁻¹

18J₁+34J₂: 129.2meV ~1000 cm⁻¹

The R dependence J_1 and J_2 of hexagonal RMnO₃.

 J_2 decreases systematically when the R ionic radius increases J_1 is nearly independent of R ionic radius.

Raman Spectroscopy is an easier method than Neutron Scattering !

3. Spin excitations in Ga-doped hexagonal HoMnO₃ thin films

Sample - Hexagonal HoMnO₃

- Hexagonal HoMnO₃
 - Space group: P6₃cm
 - Layers of corner-sharing MnO₅ bipyramids
 - O3 and O4 : triangular base
 - O1 and O2 : apical sites

- HoMn_{1-x}Ga_xO₃ thin film (x=0, 0.05, 0.1 and 0.33)
- The samples were grown on Pt(111)//Al2O3 (0001) substrates by pulsed laser deposition techniques.

02

04

03

Results

- Spin excitation energy (peak position) and FWHM values are weakly affected.
- Spin excitation intensity has ~40% and 60% decrease for 5% and 10% Ga doping, respectively.

Results

A Mn-Mn triangular network :

Analysis

- 1. Consider 60×60 Mn ion lattices. (X)
- 2. Give each ion a number from 1 to 3600.
- 3. Choose 5%, 10%, and 33% random numbers.
- 4. Assume that the Ga ions enter a position corresponding to a random number.
- 5. Remove Mn ions "affected" by Ga ions.-Previous page
- 6. Count the number of remaining Mn ions. (Y)
- 7. Get the ratio Y/X.

Analysis

Results

Universal curve !

-> Spin excitation mechanism is not influenced by the Gasubstitution.

Substituting Ga ions affect the neighboring Mn ions only.

The spin excitations are limited in the Mn triangular network.

Summary:

- We presented magnon scattering studies in HoMn_{1-x}Ga_xO₃ (x = 0, 0.05, 0.10 and 0.33) thin films.
- The spin-wave intensity has strong decrease by Ga substitution.
- We suggest a model of how Ga-ion substitution affects neighboring Mn ions.
- The effect of Ga-ion substitution is limited to the nearest Mn ions.
- The spin excitations seem to be localized in the Mn triangular network.

4. Raman study of magnetic phase transitions of hexagonal manganites single crystal LuMnO₃

5. "Spin wave and spin flip in hexagonal LuMnO₃ single crystal",
Xiang-Bai Chen, Peng-Cheng Guo, Nguyen Thi Huyen, Seung Kim,
In-Sang Yang, Xueyun Wang, Sang-Wook Cheong,
Appl. Phys. Lett. **110**, 122405 (2017).

III. Raman results: Spin excitation peaks

T dependent (20K – 200K) Raman spectra of hexagonal LuMnO₃ single crystal in the cross configuration

Raman vs. magnetization experiment of hexagonal $RMnO_3$

Thin films: *R*=Tb, Dy, Ho Single crystal: *R*= Lu

Raman: probes the magnons in Mn³⁺ sublattices. Measure the skin-depth of the thin film, thus, it investigate the intrinsic properties of the thin film.

Magnetization: Strong paramagnetic contribution from the f-electron of the rare-earths dominate the magnetization data.

Substrate also measured at the same time.

Magnon Raman spectra selectively probes magnons in the Mn⁺³ sublattices. -> Effective to study the magnetic phase transitions due to Mn-spin ordering.

5. Two-Dimensional Correlation Analysis and Principal Component Analysis

6. Correlation between magnon and magnetic symmetries of hexagonal $RMnO_3$ (R = Er, Ho, Lu), Thi Minh Hien Nguyen, Thi Huyen Nguyen, Xiang-Bai Chen, Yeonju Park, Young Mee Jung, D. Lee, T.W. Noh, Sang-Wook Cheong, and In-Sang Yang, Journal of Molecular Structure 1124, 103-109 (2016).

II. 2D COS & PCA

600

700

800 Wavenumber (cm)

900

1000

PRETREATMENT OF DATA

Normalize the reference peak at ~680cm⁻¹ to 1000cts Noise reduction: Savitzky- Golay smoothing method (13) points)

PCA

The PCA was performed using the PLS Toolbox ver. 7.3 (Eigenvector Research, Inc.) for Matlab (The MathWorks Inc.)

2D COS

The 2D correlation spectra were obtained in Matlab R2013b

IV. Support from 2D COS & PCA: ErMnO₃

IV. Support from 2D COS & PCA: ErMnO₃

IV. Support from 2D COS & PCA: HoMnO₃

IV. Support from 2D COS & PCA: HoMnO₃

PC3: too noisy

From PC1 & PC2: Difficult to realize the broad band of $HoMnO_3$ at ~760cm⁻¹ consists of 1 or 2 overlap peaks

IV. Support from 2D COS & PCA: LuMnO₃

Asynchronous spectra is too noise, only realize 2 peaks at 812 & 821cm⁻¹

IV. Support from 2D COS & PCA: LuMnO₃

From PC1 and PC2: observed 6 peaks overlap in the broad magnon peak.

Overlap peaks vs Single peak

DISCUSSION

Symmetry of the hexagonal manganites RMnO₃

The symmetry of LuMnO₃ and HoMnO₃ are more complicated than that of $\rm ErMnO_3$

Should be correlated with the number of overload peaks in the broad magnon peak?

RMnO₃ : *Magnetic structure*

$$I < T_{c}:$$
ferroelectric
$$J$$
Symmetry:
$$P6_{3}cm$$

$$T < T_{N}:$$
antiferromagnetic
$$J$$

$$gcm \qquad \beta_{1} (\phi = 0^{\circ}): \qquad P6_{3}cm$$

$$\chi_{xxy} \qquad \chi_{xyz} = \chi_{xzy} = -\chi_{yxz} = -\chi_{yzx}$$

$$gcm \qquad \beta_{2} (\phi = 90^{\circ}): \qquad P6_{3}cm$$

$$\chi_{yyx} \qquad \chi_{zxx} = \chi_{zyy}, \chi_{xxz} = \chi_{xzx} = \chi_{yyz} = \chi_{yzy}, \chi_{zzz}$$

$$P6_{3} \qquad \beta_{\phi} (0^{\circ} < \phi < 90^{\circ}): \qquad P6_{3}$$

$$\chi(\beta_{1}) \oplus \chi(\beta_{2})$$

Summary:

- 2DCOS and PCA are performed on the temperaturedependent Raman spectra of hexagonal RMnO₃ (R=Ho, Er) thin films and LuMnO₃ single crystal.
- The difference in the magnon scattering of hexagonal RMnO₃ (R=Lu, Ho, Er) is correlated with the different magnetic symmetries of these materials.

Conclusion

- Spin excitations near 0.1 eV are found in hexagonal RMnO₃ by Raman spectroscopy.
- ◆ They are strongly resonant with 1.8 eV, near the Mn d-d transition.

• They correlate with the magnetic ordering of Mn^{3+} ions (T_N).

A scenario of spin-flip assisted by Mn d-d transition

THANK YOU FOR YOUR ATTENTION

