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Abstract
We propose a scheme of strong and tunable coupling between a superconducting phase qubit
and a nanomechanical torsional resonator. In our scheme the torsional resonator directly
modulates the largest energy scale (the Josephson coupling energy) of the phase qubit, and the
coupling strength is very large. We analyze the quantum correlation effects in the torsional
resonator as a result of the strong coupling to the phase qubit.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Probing the quantum mechanical properties of macroscopic
objects is believed to be the key to understanding the border
between classical and quantum physics. Nanomechanical
resonators, which have a high frequency of gigahertz and low
dissipation, provide a tangible system to study such macro-
scopic quantum phenomena [1–3]. Coupling the resonator
to the superconducting qubits has attracted great theoretical
interest as it provides a way of controling and detecting the
quantum behavior of the resonator [4–12] and a prototypical
experiment has recently been demonstrated [13, 14].

Besides the fundamental aspect of the system, a
nanomechanical resonator prepared in a squeezed state can
improve its noise properties, upon which the limit of force
detection sensitivity is based, beyond the standard quantum
limit [15]. An architecture for a scalable quantum computation
has also been suggested based on the integration of the
nanomechanical resonators with the superconducting phase
qubits [16, 17].

In this paper, we propose a scheme of strong and
tunable coupling between a superconducting phase qubit and
a nanomechanical torsional resonator. In our scheme, the
direct modulation of the largest energy scale of the phase
qubit enables a large coupling strength. This distinguishes
our scheme from other previously proposed schemes. For
example, in [18], the flexural vibrational modes were coupled

to a charge qubit by modulating the Josephson energy, which
in their case is one of the smallest energy scales of the qubit
system. We analyze the quantum correlation effects in the
torsional resonator and also provide the noise analysis, which
shows that our scheme is feasible experimentally at the level of
present technology.

The rest of the paper is organized as follows. In section 2
we summarize the basic operational mechanism of the phase
qubit and the characteristics of the torsional resonator. In
section 3 we analyze the coupling mechanism between the
phase qubit and the torsional resonator. The reduced coupling
constant is expressed in terms of the control parameters of
the phase qubit and the torsional resonator. In section 4 we
discuss the possible quantum correlation effects, especially,
the squeezing of the torsional vibration mode, in the strong
coupling limit. In section 5 we provide a detailed noise analysis
in a possible experimental realization of the scheme. Finally
the paper is concluded in section 6.

2. Qubit and resonator

A superconducting phase qubit consists of a double Josephson
junction (figure 1) of small size, and is described by the
Hamiltonian of the form

Hqubit = ECn2 − 2EJ cos(π f ) cos(ϕ − π f ), (1)
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Figure 1. (a) A schematic of a superconducting phase qubit coupled to a torsional resonator. The arrows denote the external magnetic field.
(b) A schematic of the energy levels corresponding to the logical basis states |0〉 and |1〉 of a phase qubit.

where the number n of Cooper pairs that has tunneled
through the double junction and the phase difference ϕ across
the junction are quantum mechanical conjugate variables,
i.e. [ϕ, n] = i . Here EC = (2e)2/2C ∼ 10 neV is the
charging energy of the double junction with total capacitance
C , EJ ∼ 50 meV is the Josephson coupling energy of each
junction5, f is the external flux (in units of the flux quantum
�0 = h/2e) threading the loop. In equation (1), the effective
Josephson coupling Eeff

J = 2EJ cos(π f ) of a phase qubit is
controlled by the external flux f . A phase qubit typically
operates in the range where kBT � EC � EJ, and uses as
its computation basis the two lowest-energy states |0〉 and |1〉
confined in the potential well around ϕ = π f ; see figure 1(b).
Within the subspace spanned by the computational basis, the
qubit Hamiltonian (1) can be written as

Hqubit ≈ − 1
2�σz (2)

where σx , σy, σz are the Pauli matrices. The level splitting �

can be estimated by � ≈
√

2EC Eeff
J ∼ 40 μeV ∼ 2π ×

10 GHz6 [19].
The torsional vibration mode of the substrate is described

by an harmonic oscillator Hamiltonian

Hosc = P2
θ

2I
+ 1

2
Iω2

0θ
2 (3)

where Pθ is the (angular) momentum conjugate to θ , I ∼
10−28–10−32 kg m2 is the rotational moment of inertia of the
torsional resonator, and ω0/2π ∼ 8–800 MHz is the vibration
frequency. The fluctuations of the angle θ can be characterized
by the parameter θ0 ≡ √

h̄/Iω0, which is the fluctuation
in the ground state. In typical experimental situations θ0 ∼
10−6–10−7 rad depending on the values of I and ω0.

3. Spin–resonator coupling

With the qubit put on the torsional resonator as in figure 1, the
effective flux f in the qubit Hamiltonian (1) is modulated as
5 We assume identical junctions for simplicity, but the following discussions
remain valid for the general case.
6 A more precise value of � can be obtained by solving the Schrödinger
equation, which is known as the Mathieu equation.

f = f0 sin θ , where θ is measured relative to the direction of
the external magnetic field, and hence the qubit is coupled to
the torsional vibration mode. We point out a key advantage
of this qubit–resonator coupling scheme: as mentioned above,
the phase qubit operates in the regime, where EJ is the largest
energy scale. The torsional vibration directly modulates this
largest energy scale. This means that the coupling between
the qubit and the torsional vibrational mode can be large, as
demonstrated below.

If we apply the external magnetic field parallel to the
phase qubit plane, then the flux modulation is given by f =
f0(θ − θe). Here f0 is the maximum magnetic flux (i.e. the
value when the field is perpendicular to the qubit plane) and
θe is the angle at equilibrium measured from the direction of
external field. We assume that θe = 0 (non-zero θe slightly
decreases the coupling strength by a factor sin θe). Within the
two-level approximation, the total Hamiltonian is given by

H = − 1
2�σz + 1

2 g
√

�ω(a + a†)σx + ωa†a (4)

where g is the dimensionless reduced coupling constant
between the phase qubit and the torsional resonator. Note that
the oscillator frequency has been slightly renormalized from
ω0 to

ω ≡ ω0

√
1 + 2(π f0)2 EJ/Iω2

0 (5)

due to the coupling to the phase qubit. The renormalization
of the frequency ω0 → ω also renormalizes the quantum
fluctuation angle θ0 to

θ1 ≡
√

h̄

Iω
. (6)

The coupling constant g in this case is given by

g = π f0

√
2EJ

Iω2
. (7)

The effective Hamiltonian (4) is the well-known cavity-
QED (quantum electrodynamics) Hamiltonian for the atom–
light interaction in an optical cavity. For optical cavities, the
two-level system (or ‘spin’) is at resonance with the oscillator
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Figure 2. (a) Squeezing of the torsional resonator as a function of the reduced coupling strength g for � = 10ω and � = 104ω.
(b) Squeezing of the torsional resonator as a function of the Josephson energy EJ and the ratio b/a of the lateral sizes of the phase qubit.

(� ∼ ω), and the coupling energy g
√

�ω is 10−6 times
smaller, at best, than ω. In such cases, it is customary to make
a so-called rotating-wave approximation (RWA), which leads
to the Jaynes–Cummings model [20],

H ≈ − 1
2�σz + 1

2 g
√

�ω(aσ+ + a†σ−) + ωa†a (8)

where σ± = (σx ± iσy)/2. The ground state of the Jaynes–
Cumming model (8) does not exhibit any quantum correlation
effects of particular interest. As the coupling energy g

√
�ω

increases (g � 10−3), however, the RWA breaks down, and
the ground states start to exhibit strong quantum correlation
effects such as squeezing of the oscillation mode (figure 2), as
discussed below.

4. Strong coupling limits

Before we discuss the ‘strong’ coupling limit of the qubit–
resonator composite system, we need to distinguish the limit
from the conventional strong coupling limit. The effective
qubit–resonator Hamiltonian (4) is an example of a more
general class of spin-boson models, which are commonly
achieved in optical cavities. Conventionally, for optical
cavities, the strong coupling limit means the coupling constant
larger than the energy dissipation rate γ , so that the coherent
interaction between the two-level system and the oscillator can
be maintained. In our case, we push the limit even further and
are mainly concerned about the regime where the ground state
of the qubit–resonator composite system exhibits non-trivial
quantum correlation effects. In this paper, we will use the
squeezing in the vibrational mode as the measure of the non-
trivial quantum correlation effects.

Despite its simple form of the Hamiltonian (4) the spin-
boson model has turned out to be highly non-trivial beyond
the Jaynes–Cumming or RWA regime [21]. In particular, the
spin-boson model (4) is known to have a strong squeezing
effect in its ground state when the coupling energy g

√
�ω is

comparable to the geometric mean
√

�ω of the two energy
scales � and ω; see figure 2(a). The manipulation of squeezed

optical modes using the light-atom interaction in an optical
cavity is by now standard (see, e.g. [22]). However, an
important difference is that in our scheme the squeezing
is achieved in the static ground state of the system. By
contrast, in optical cavities it can be created only by dynamical
procedures due to the weak coupling. That is, the two-level
atoms should be prepared in a special quantum state by means
of a sequence of optical pulses before they interact with the
cavity modes and the atom–cavity interaction time should be
tune precisely depending on the initial state of the atoms. The
resulting squeezing is thus much more difficult and less stable
than in our scheme. Another important difference is that in
a conventional optical cavity � ∼ ω whereas in our scheme
the detuning is very large (�/ω ∼ 104; recall that the actual
coupling energy in natural units is given by g

√
�ω).

The detailed analysis and discussion on the squeezing
effect in the strong-coupled spin-boson model is out of the
scope of this paper. Here we merely refer the readers to recent
discussions in [23, 24], and define the strong coupling (also
called ultra-strong coupling) limit by the condition g ∼ 1.

The coupling constant g in (7) is estimated to be g 	
0.5, surpassing the strongest coupling strength achieved so
far in the previous qubit-oscillator coupling schemes, even in
macroscopic samples with a lateral size of several micrometers
(I ∼ 10−28 kg m2) [25–27]. Here we have put f0 	 100,
assuming an external field of B ∼ 0.1 T (the lower critical
field of Nb, for example, is as large as 150 T [28]). One can
enhance the coupling strength even further by using a phase
qubit with a lateral size of several hundred nanometers and by
designing its geometric shape so that the loop containing the
double Josephson junction is longer along the axis, namely,
a > b in figure 1 keeping the loop area a × b the same (for
example, a ∼ 2 μm and b ∼ 0.5 μm). The squeezing effect is
also more pronounced for larger values of �, i.e. for Josephson
junctions with larger EJ. These points have been demonstrated
in figure 2(b), where we have plotted the uncertainty 
P
in the momentum quadrature as a function of the Josephson
coupling energy EJ and the ratio b/a of the geometric sizes
of the phase qubit. (In the circuit QED systems based on the
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superconducting circuits [29], the theoretical limit is known
to be g ∼ 1 as well.) The strong coupling in our scheme is
possible because the vibrational mode directly modulates the
largest energy scale (EJ) of the phase qubit. A similar idea has
been explored in [8, 30–33] but using the flexural vibrations
of nanomechanical beams. Note that even for moderate values
of Q-factor, Q ∼ 103 [26], the condition for the conventional
strong coupling limit (g

√
�ω 
 γ ) is easily satisfied in our

case, g
√

�ω/γ ∼ 103.

5. Noise analysis

It is important to calculate and compare the angle detection
limit, for example that of an optical interferometer, and the
fundamental limits due to thermal and quantum fluctuations.
The deflection angle of a torsional resonator can be detected
by measuring the displacement at the end of its wing with a
fiber-optic interferometer. A low-power (∼1 μW) laser light
from a fiber is focused by a lens system to a micron spot on
the backside of the resonator, and reflected to couple back
into the fiber, giving a displacement-sensitive signal. For the
following analysis, we consider a silicon resonator, coupled to
a superconducting qubit, consisting of a 2 ×2 μm2 rectangular
paddle suspended by narrow beams on both edges, which are
2 μm long with a (100 nm)2 cross section. To minimize the
heating effect due to the probing light, it may be necessary to
deposit a high-purity silver thin film on the backside, which
will play the role of a excellent reflector and a heat sink at
a low temperature of 20 mK. From our estimation, a 50 nm-
thick silver coating may reduce the temperature difference
from a cryogenic bath down to 5 mK, while increasing a
torsional spring constant by 7%. Recently, a Fabry–Perot
(FP) interferometer with a miniaturized hemi-focal cavity,
developed for micrometer-sized cantilevers, was reported to
have a remarkably small noise floor of 1 fm Hz−1/2 at 1 MHz
with a decreasing tail at higher frequencies [34]. The effective
noise bandwidth of the torsional oscillator of interest to us is
estimated to be 
ω = ω/Q ∼ 2π × 2.4 kHz if Q ≈ 5000, a
typical value for a micrometer-sized oscillator [27]. The angle
detection limit for our oscillator is


θFP = 2

√
SFP
ω

2πd2
≈ 5 × 10−8 rad, (9)

where d ≈ 2 μm is the lateral size of the qubit and
√

SFP ≈
1 fm Hz−1/2 is the noise floor of the FP interferometer. The
detection limit is comparable or even smaller than the quantum
fluctuation angle θ1 ∼ 10−7 rad (for I ∼ 10−28 kg m2) or
larger, and enough to measure the quantum fluctuations.

The thermal fluctuation of angle originates from the
thermal energy stored in the mechanical vibration energy of
the torsional resonator, and can be estimated as

θT =
√

kBT/Iω2. (10)

At an experimentally accessible low temperature of 20 mK and
with I ∼ 10−28 kg m2, for instance, the torsional resonator is
predicted to vibrate up to θT ≈ 6.2 × 10−7 rad. Therefore, the
thermal fluctuation would be the main limitation to detecting

the quantum vibration. The ratio of the thermal to quantum
fluctuation is only ∼7 at 20 mK, and can be improved even
further by lowering the cryogenic temperature or by using
optical or microwave cooling techniques [35]. The quantum
temperature TQ = h̄ω/kB is a border where the torsional
resonator enters the quantum regime, and yields 0.37 mK. So,
the thermal occupation factor N = T/TQ is ∼60 when the
torsional resonator is at a temperature of T = 20 mK, which
can also be found from an experimentally observed fluctuation
angle θT by T = Iω2θ2

T/kB.

6. Conclusion

We have proposed a scheme of strong and tunable coupling
between a superconducting phase qubit and a nanomechanical
torsional resonator. The torsional resonator directly modulates
the largest energy scale (the Josephson coupling energy) of
the phase qubit, and the coupling strength is achievable. We
have analyzed the quantum correlation effects in the torsional
resonator as a result of the strong coupling to the phase qubit.
We have also provided the noise analysis, which shows that
our scheme is feasible experimentally at the level of present
technology.
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