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We study the effect of ultrastrong cavity-qubit coupling on the low-lying excitations of a chain of coupled
circuit quantum electrodynamic (QED) systems. We show that, in the presence of the onsite ultrastrong coupling,
the photon hopping between cavities can be mapped to the Ising interaction between the lowest two levels of
individual circuit QED of the chain. Based on our mapping, we predict two nearly degenerate ground states
whose wave functions involve maximal entanglement between the macroscopic quantum states of the cavities
and the states of qubits and identify that they are mathematically equivalent to Majorana bound states. Further,
we devise a scheme for the dispersive measurement of the ground states using an additional resonator attached to
one end of the circuit QED chain. Finally, we discuss the effects of disorders and local noises on the coherence
of the ground states.
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I. INTRODUCTION

Confronted with formidable difficulties in solving strongly
interacting many-body systems, it has been desired to find good
quantum simulators. It may seem natural to simulate a many-
body system with another tunable system of massive particles
such as ultracold atomic gases.1 In fact, any controllable
quantum system, notably quantum computer if ever practical,
can simulate efficiently many-body systems.2 Indeed, it has
been recognized that arrays of coupled photonic cavities,
each coupled to a two-level system, can simulate closely
the quantum behaviors of strongly correlated many-body
systems.3–5 Subsequent studies have revealed that the Bose-
Hubbard model,6 interacting spin models,5,7 and other exotic
quantum phases8 can be simulated efficiently using the coupled
cavities. Further, recent advances in solid-state devices such
as circuit quantum electrodynamics (QED) systems9,10 and
microcavities11,12 and ongoing efforts to fabricate large-scale
cavity arrays13,14 make the array of coupled cavities a promis-
ing candidate for an efficient quantum simulator.

The strongly interacting photons or polariton physics in
the coupled cavities arise from the interplay between the
onsite cavity-qubit coupling and the photon hopping between
cavities. The onsite cavity-qubit coupling gives rise to a
nonlinearity in the system and induces an effective onsite
photon-photon interaction. While the cavity-qubit coupling
rate is considered to be larger than the rates that the system
loses its energy to the environment, the previous works have
assumed that the cavity-qubit coupling rate is still much
smaller than the cavity frequency and the transition frequency
of the qubit. In this sense, studies on the coupled cavities have
been limited to Jaynes-Cummings lattices model.15

Meanwhile, for a single cavity coupled to a single qubit,
the so-called ultrastrong coupling has been envisioned16

and experimentally demonstrated.17 That is, the qubit-cavity
coupling rate is comparable to or even higher than the cavity
frequency. In the ultrastrong-coupling regime, processes that
excite or deexcite the cavity and the qubit simultaneously, the
so-called counter-rotating terms, can not be neglected and they

bring about fundamentally different physics deeply connected
to the high degree of entanglement between the qubit and the
photon.18–22

The main motivation of this paper is to investigate effects
of the ultrastrong coupling on the low-lying excitations of the
coupled cavities, thus exploring physics beyond the Jaynes-
Cummings lattices. Although our discussion is not limited
to a particular implementation of the coupled cavities, we
mainly focus on the one-dimensional (1D) array of circuit QED
systems (cQEDs), with each cQED being in the ultrastrong-
coupling regime (see Fig. 1). An important finding of this
paper is that, in the presence of the ultrastrong coupling, the
photon hopping can be mapped to the Ising interaction between
the effective spins that correspond to the lowest two levels of
each cavity QED. With the energy splitting between the two
levels playing the role of the Zeeman field for the effective
spins, the cQED arrays realize a transverse-field Ising model.
Interestingly, we find that while the transverse field decreases
exponentially as a function of the ratio between the coupling
strength and the cavity frequency, the Ising interaction strength
increases quadratically. That is, the ultrastrong coupling drives
the arrays to the magnetically ordered phase.

From our mapping, we find that the ultrastrong coupling
leads to two nearly degenerate ground states separated by a
finite-energy gap from the continuum of higher-energy states.
We obtain an analytical expression for the ground states
and find that the ground states are a superposition of two
amplitudes: For one amplitude, each of the cavity fields is
displaced to the +x direction in the phase space with an
amplitude determined by the coupling strength, while each
of the qubits is directing the +x direction in the Bloch sphere.
For the other amplitude, all the cavities are displaced to the −x

direction, while qubits are directing the −x direction. This is a
truly large-scale qubit-cavity entanglement in that it involves
macroscopic quantum states of the cavities in the entire chain
and the states of the qubits.

Moreover, the interacting spin system realized in the
ultrastrong-coupling regime can be mapped to the chain of
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FIG. 1. (Color online) Schematic of 1D circuit QED arrays. The
black lines represent the superconducting microwave resonators with
a resonant frequency ω0, which are capacitively coupled to each other
allowing photon hopping between resonators with an amplitude J .
Each of the microwave resonators, labeled from 1 to N , contains a
superconducting qubit (red dot), thus realizing a circuit QED with a
cavity-qubit coupling strength λ. Particularly, the coupling strength
λ is larger than the cavity photon frequency ω0, so that each of the
circuit QEDs is in the ultrastrong-coupling regime.

Majorana fermions using the Jordan-Wigner transformation.
Then, the magnetically ordered phase corresponds to the
topologically nontrivial phase which supports Majorana bound
states. Therefore, the circuit QED arrays with the ultrastrong
coupling can be used to simulate this exotic physics.23

Although the Majorana zero mode realized in this system does
not inherit the topological protection against “real-space” local
noises, the structure of the ground-state wave functions allows
a partial protection from certain local noises. We show that
the local fluctuation of qubits along the y and z directions (the
ground states involve states of qubits directing ±x directions
in the Bloch sphere) can only come as a second-order effect.
Moreover, we find that the decoherence rate is proportional to
the relaxation rate of the individual qubit and it scales as the
number of cQEDs in the array.

Finally, we suggest a scheme to probe the macroscopic
ground states of the cQED arrays. By simply adding an
additional cavity capacitively coupled to the one end of
the array, the macroscopic ground states as a two-level
system couple to the additional cavity field, thus realizing
a standard Jaynes-Cummings Hamiltonian. Moreover, we
show that the coupling strength between the additional cavity
field and the ground states exceeds the decoherence rate of
the ground states, thus realizing the strong-coupling regime.
This allows a dispersive measurement of the ground states
using the additional cavity and opens up a possibility to
probe the Majorana bound state simulated in the circuit
QED arrays.

The paper is organized as follows. In Sec. II A, we introduce
the model for the cQED arrays. The single cQED Hamiltonian
in the ultrastrong-coupling regime is analyzed in Sec. II B.
The mapping of the photon hopping Hamiltonian to the Ising
interaction Hamiltonian is established in Sec. II C, followed
by the effective spin model for the cQED arrays in Sec. II D.
From this effective model, the ground states of the cQED arrays
in the ultrastrong-coupling regime are derived in Sec. II E. In
Sec. III, we describe the system in terms of Majorana fermions
and find that the ground states of the arrays correspond to
the Majorana bound state. In Sec. IV, we derive the master
equation and discuss the effects of noises. The effects of

disorder are also discussed. The detection scheme is proposed
in Sec. V. We conclude our paper in Sec. VI with discussion
of the experimental feasibility.

II. ARRAY OF CIRCUIT QED SYSTEMS WITH THE
ONSITE ULTRASTRONG COUPLING

A. System and the model

We consider a 1D array of circuit QED systems (see Fig. 1).
Each cQED consists of the resonator, a superconducting
microwave transmission line, and the qubit, a superconducting
quantum bit (two-level system).9,24 It is theoretically described
by the Rabi Hamiltonian

H
cQED
i = ω0a

†
i ai − λ(ai + a

†
i )σx

i + �

2
σ z

i , (1)

where ai and a
†
i are the field operators of the resonator with

frequency ω0, σx
i and σ z

i are Pauli operators of the qubit with
energy splitting �, and λ the resonator-qubit coupling energy
in the ith cQED.

The resonators of neighboring cQEDs are coupled ca-
pacitively to each other, and the microwave photons can
hop from one resonator to nearby ones. Such hopping of
microwave photons from resonator i to i + 1 is described by
the Hamiltonian

H
hopping
i = −J (a†

i ai+1 + a
†
i+1ai), (2)

where J is the photon hopping amplitude. The Hamiltonian of
the whole chain is then given by

H =
N∑

i=1

H
cQED
i +

N−1∑
i=1

H
hopping
i , (3)

where N is the number of cQEDs in the chain.
If the onsite coupling energy λ is sufficiently smaller than

ω0, then the counter-rotating terms in (1), aiσ
−
i + a†σ+

i ,
can be neglected within the spirit of the usual rotating-
wave approximation. In this case, the cQED Hamiltonian
reduces to the Jaynes-Cummings Hamiltonian, and Eq. (3)
to the Jaynes-Cummings-Hubbard model, which exhibits the
superfluid–Mott-insulator phase transition.3–6 If, however,
λ is comparable to ω0 (the ultrastrong-coupling regime),
the rotating-wave approximation can not be justified, and
the Jaynes-Cummings-Hubbard model does not properly
describe the arrays of cQEDs any longer. In the following
sections, we investigate the consequences of the counter-
rotating terms in the cQED arrays.

B. A single circuit QED system in the
ultrastrong-coupling regime

We begin our analysis by discussing the properties of a
single cQED in the ultrastrong-coupling regime (λ � ω0). It is
a building block for the cQED arrays, and it is crucial to first
understand the low-lying states of a single cQED Hamiltonian
before examining the low-energy excitations of the arrays.
Unlike the Jaynes-Cummings Hamiltonian, the total number
of excitations N = a

†
i ai + (σ z

i + 1)/2, is not a good quantum
number, but only is the even-odd parity of N . In other words,
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the Hamiltonian (1) commutes with the “parity” operator

�i = exp(−iπa
†
i ai)σ

z
i . (4)

Hence, the Hilbert space E is decomposed into two orthogonal
subspaces E±

i of ± parity E = E+ ⊕ E−, and correspondingly
the Hamiltonian (1) into H

cQED
i = H+

i ⊕ H−
i with H±

i re-
siding on E±, respectively. This parity symmetry proves to be
useful to investigate the energy levels and find the approximate
expression for the low-lying states as shown in the following.19

Within each subspace E±
i , the Hamiltonian H±

i can be
described in effect by a single bosonic operator bi = aiσ

x
i :

namely,

H±
i = H 0

i ± H 1
i (5)

with

H 0
i = ω0(b†i − λ/ω0)(bi − λ/ω0) , (6)

where we have added a constant λ2/ω0, and

H 1
i = �

2
cos(πb

†
i bi). (7)

H 0
i is simply a displaced harmonic oscillator and the ground

state is a coherent state with an amplitude λ/ω0:

|λ/ω0〉±bi
= e−λ2/2ω2

0

∞∑
n=0

(λ/ω0)n√
n!

|n〉±bi
. (8)

Here, |n〉±bi
is a Fock basis for the bosonic mode bi defined

in the subspace E±
i , respectively. For λ/ω0 � 1 (regardless

of �), the term H 1
i can be treated perturbatively and shifts

the energies of |λ/ω0〉±bi
relatively by an exponentially small

amount,

� ≡ �

2
exp[−2(λ/ω0)2] (� ω0). (9)

As one can see from the energy-level diagram in Fig. 2(a),
the two nearly degenerate ground states |λ/ω0〉±bi

with an
exponentially small energy splitting 2� are separated far
(i.e., by ω0) from higher levels. Therefore, we can safely
confine ourselves within the ground-state subspace, in which
the Hamiltonian (1) is reduced to

H
cQED
i = −�τz

i . (10)

Here, we have introduced the pseudospin operator

τ z
i ≡ |↑〉i〈↑| − |↓〉i〈↓| (11)

and taken simplified notations |↑〉i ≡ |λ/ω0〉−bi
and |↓〉i ≡

|λ/ω0〉+bi
.

In passing, for later discussion, we also note an interesting
property of the ground states. Back in the {ai,σ

z
i } basis, the

nearly degenerate ground states are expressed as19,21

|↑〉i = |λ/ω0〉i |+〉i − |−λ/ω0〉i |−〉i√
2

, (12a)

|↓〉i = |λ/ω0〉i |+〉i + |−λ/ω0〉i |−〉i√
2

, (12b)

where |α〉i (α ∈ C) is the eigenstate (coherent state) of ai and
|±〉i are the eigenstates of σx

i (see Table I). Clearly, these states
have a high degree of entanglement between the resonator and
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FIG. 2. (Color online) (a) Energy-level diagram for the circuit
QED Hamiltonian (1) as a function of λ/ω0. Red (blue) curves are
for even (odd) parity. (b) Plot of ω0

λ i〈↓|ai |↑〉i . We can conclude that
λ > 2ω0 is required for our model to be valid because the transverse
field � almost vanishes and the identification of photon annihilation
operator as a spin-flip operator ω0

λ
ai = τ x

i is justified.

the qubit within the cQED. Following, we will see that such
entanglement is extended over the whole cQED chain.

C. Photon hopping term: Mapping to the Ising interaction

Now, we examine the effects of photon hopping [H hopping
i

in Eq. (2)] on the two lowest levels of the cQED Hamiltonian,
given in Eq. (12). The photon hopping amplitude J is
determined by the capacitance between the resonators, and
typically it is much smaller than the photon frequency, that
is, J � ω0. As we have shown in the previous section, ω0

determines the energy gap separating the states |↑〉i and
|↓〉i from higher levels. Therefore, in the first-order approx-
imation, we can project the photon hopping Hamiltonian
(2) to the subspace spanned by the states |↑〉i and |↓〉i .
Remarkably, there is a simple relation between the two states,

TABLE I. Notations for the qubit (σ z
i ), the pseudospin (τ z

i ), and
the macroscopic pseudospin Sz basis.

σ z
i σ x

i τ z
i τ x

i Sz Sx

|0〉i |+〉i |↑〉i |→〉i |⇑〉 |⇒〉
|1〉i |−〉i |↓〉i |←〉i |⇓〉 |⇐〉
|±〉i = |0〉i±|1〉i√

2
| →← 〉i = |↑〉i±|↓〉i√

2
| ⇒⇐〉 = |⇑〉±|⇓〉√

2
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that is,

ai |↑〉i = λ/ω0|↓〉i , (13)

ai |↓〉i = λ/ω0|↑〉i . (14)

This is in stark contrast to the vacuum of the Jaynes-Cummings
Hamiltonian, where applying the annihilation operator to the
ground state leads to zero. It is a direct consequence of the
peculiar structure of the vacuum of cQED Hamiltonian in
the ultrastrong-coupling regime. As one can see in Eq. (12),
the cavity part of the ground states consists of two coherent
states with the same amplitude and opposite phases. Since the
coherent state is the eigenstate of the annihilation operator ai , it
only changes relative phase between the two amplitudes. From
this relation, we can map both the creation and annihilation
operator to pseudo-spin-flip operator

ai,a
†
i → λ

ω0
(|↓〉i〈↑| + |↑〉i〈↓|) ≡ λ

ω0
τ x
i . (15)

In Fig. 2(b), the accuracy of this mapping is demonstrated. It
turns out that the mapping is very accurate as long as λ � 2ω0.

Finally, the photon hopping Hamiltonian can be mapped to
the Ising interaction between the states |↑〉i and |↓〉i , that is,

H
hopping
i = −Jeffτ

x
i τ x

i+1 (16)

with Jeff = 2J (λ/ω0)2. The effective Ising interaction strength
Jeff is renormalized with respect to J by the factor (λ/ω0)2

because the field part of the pseudospin states in Eq. (12)
is a coherent state with amplitudes λ/ω0 and the field-
field interaction between resonators is proportional to the
amplitudes of the resonator fields.

D. A transverse-field Ising chain

Let us now investigate the whole chain described by the
Hamiltonian (3). As we have explained in Sec. II B, we can
consider each cQED as a pseudospin. Thus, the circuit QED
arrays can be regarded as a 1D spin chain

N∑
i

H
cQED
i = −�

N∑
i

τ z
i . (17)

In addition, we have shown in Sec. II C that the photon hopping
can be mapped to the Ising interaction between the nearest-
neighborhood spins in the spin chain:

N−1∑
i=1

H
hopping
i = −Jeff

N−1∑
i=1

τ z
i τ z

i+1. (18)

Putting both (17) and (18) together into the total Hamiltonian
(3), the low-energy effective Hamiltonian for the cQED chain
becomes the so-called transverse-field Ising model (TFIM)

HIsing = −�

N∑
i

τ z
i − Jeff

N−1∑
i

τ x
i τ x

i+1. (19)

The TFIM exhibits a quantum phase transition between the
magnetically ordered phase for � < Jeff and the quantum
paramagnet phase for � > Jeff .25 The former is particularly
interesting because it permits nearly degenerate ground states
of the system. We will also see in Sec. III that it corresponds

to the topologically nontrivial phase in the Majorana chain.
Interestingly, the ultrastrong can realize the magnetically
ordered phase. This is because the transverse field � =
�
2 e−2(λ/ω0)2

decreases exponentially as a function of the ratio
λ/ω0, while the effective Ising interaction Jeff = 2J (λ/ω0)2

increases quadratically.
For � = 0, HIsing has two degenerate ground states

|⇒〉 ≡
∏

i

|→〉i , |⇐〉 ≡
∏

i

|←〉i , (20)

where |→〉i and |←〉i are eigenstates of τ x
i (see Table I).

For � > 0 (yet � < Jeff), τ z
i tends to flip the pseudospins

|→〉i ↔ |←〉i . It causes tunneling between |⇒〉 and |⇐〉 via
soliton propagation, and hence the true eigenstates become

|�0〉 = 1√
2

(|⇒〉 + |⇐〉) , |�1〉 = 1√
2

(|⇒〉 − |⇐〉). (21)

However, as the tunneling involves N spins, the tunneling
amplitude is exponentially suppressed with the system size
N . In other words, |�0〉 and |�1〉 are nearly degenerate with
energy splitting, δ ∼ exp(−N/ξ ) with ξ being the correlation
length of the Ising chain, exponentially small in system size
N . Both are separated from the continuum of excitations by
the energy gap Jeff . Expressed in terms of pseudospins, |�0〉
and |�1〉 in Eq. (21) take the typical form of the GHZ state,26

incorporating a high degree of nonlocal entanglement.

E. Large-scale maximal entanglement in the ground states

The ground states expressed in terms of the pseudospins in
Eq. (21) allow us to find the ground-state wave function of the
circuit QED arrays in terms of the cavity fields and the qubit
states. First, the eigenstate of the τx operator |→〉 is

|→〉i = |↑〉i + |↓〉i = |λ〉i |+〉i , (22)

|←〉i = |↑〉i − |↓〉i = |−λ〉i |−〉i . (23)

Then, the two degenerate ground states for � = 0 become

|⇒〉 =
N∏

i=1

|λ/ω0〉i |+〉i , |⇐〉 =
N∏

i=1

|−λ/ω0〉i |−〉i . (24)

That is, |⇒〉 indicates that each of the cavity fields is displaced
to the +x direction in the phase space with an amplitude
determined by the ratio λ/ω0, while each of the qubits is
directing the +x direction in the Bloch sphere. Similarly, |⇐〉
indicates all the cavities are displaced to the −x direction,
while qubits are directing the −x direction. Finally, the true
eigenstates of the chain [Eq. (21)] are a superposition of these
two macroscopically distinctive states,

|�s〉 = 1√
2

[
N∏
i

|λ/ω0〉i |+〉i + (−1)s
N∏
i

|−λ/ω0〉i |−〉i
]

(25)

with s = 0 or 1. The entanglement involves large-amplitude
(λ/ω0 � 1) coherent states of the cavity fields, and the
scale to which they are entangled with the qubits is truly
macroscopic in the sense that Eq. (25) is a superposition of
two orthogonal states of fields and qubits distributed across
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a chain of centimeter-long resonators. Entanglement over a
fraction of a meter can be achievable even with a moderate
number of resonators.

III. A MAJORANA CHAIN

The 1D TFIM discussed above is equivalent to a chain of
Majorana fermions.27,28 The latter has attracted great interest
because it permits localized Majorana modes that can be used
for topologically protected quantum computation.27–29 A very
recent experiment30 suggests that the Majorana chain can be
realized in a solid-state system, and intensive efforts are made
in this direction.31

Here, we reexpress the two nearly degenerate states in
Eq. (21) or (25) in terms of localized Majorana fermions,
and later discuss an experimentally feasible way of probing
such Majorana fermions. The equivalence between the TFIM
and the Majorana chain can be seen through a Jordan-
Wigner transformation:32 c

†
i = τ+

i

∏i−1
j=1(−τ z

j ) with τ+
i =

1
2 (τ x

i + iτ
y

i ). The operators ci and c
†
i describe Dirac fermions

and satisfy {ci,c
†
j } = δij and {ci,cj } = 0. The Dirac fermion

operators are further represented with self-conjugate Majorana
operators γ2i−1 = c

†
i + ci and γ2i = i(c†i − ci). The TFIM (19)

is then reduced to

HMajorana = i

2

[
�

N∑
i=1

γ2i−1γ2i + Jeff

N−1∑
i

γ2iγ2i+1

]
. (26)

At � = 0, the Majoranas at the two ends, γ1 and γ2N , in the
chain do not appear in the Hamiltonian, which implies the
existence of two degenerate ground states. These are nothing
but |⇒〉 and |⇐〉 in Eq. (20). For finite �, the two states |⇒〉
and |⇐〉 are mixed linearly into |�0〉 and |�1〉 in Eq. (25) due
to the tunneling between two Majorana modes γ1 and γ2N ,
and the degeneracy is lifted. Since the tunneling is through the
whole chain, the energy splitting δ is exponentially small (as
long as � < Jeff). One can check that (γ1 + iγ2N )|�0〉 = 0
and (γ1 + iγ2N )|�1〉 = 2|�0〉, which means that |�1〉 has one
more fermion than |�0〉 or equivalently that |�0〉 and |�1〉
have different fermion parities.

Here, we emphasize that the two Majoranas localized at
the ends of the Majorana chain are actually nonlocal in the
physical chain, i.e., the cQED chain or the Ising chain:23 The
Majorana operators are represented in terms of τ x

j and τ z
j as

γ1 = τ x
1 , γ2N = iτ x

N

N∏
j=1

( − τ z
j

)
, (27)

and γ2N involves the string operator
∏N

j=1(−τ z
j ). This implies

that the two nearly degenerate ground states |�0〉 and |�1〉 are
not protected topologically against local noises even though
mathematically they correspond to two distinct Majorana
modes. It is contrary to the case where the two Majorana
modes at the ends of a p-wave superconducting wire are
topologically protected. However, we will see in the following
that the Majorana bound states realized in cQED arrays can be
indeed detected within the time scale that the noises destroy
this exotic phase.

IV. EFFECTS OF NOISES AND DISORDERS

A. Noises

In this section, we examine the effects of the local noises
on the coherence of the maximally entangled macroscopic
ground states in Eq. (25) or, equivalently, on the Majorana
bound states. The local noises induce fluctuation of the
qubit parameters in σx

i , σ
y

i , and σ z
i directions, where σ

μ

i

indicates Pauli matrices for the physical qubit in the ith cavity.
In addition, the intrinsic cavity decay will also affect the
coherence of the quantum states. We model the environment
using the baths of harmonic oscillators

Hb =
N∑

i=1

∑
k

ωa
ikc

a†
ik ca

ik +
∑

q=x,y,z

N∑
i=1

∑
k

ω
q

ikc
q†
ik c

q

ik, (28)

where ca
i is a bath operator for the ith cavity, and c

q

i a bath
operator for the ith qubit in the q direction. The cQED array
(system) described by Eq. (3) couples to the bath

Hsb =
N∑

i=1

∑
k

κik(ai + a
†
i )

(
ca
ik + c

a†
ik

)

+
∑

q=x,y,z

N∑
i=1

∑
k

γ
q

ikσ
q

i

(
c
q

ik + c
q†
ik

)
, (29)

where κik is a cavity-bath coupling strength and γ
q

ik a qubit-bath
coupling strength in the q direction. Our goal is to investigate
the effects of baths on the lowest two levels of the system
Hamiltonian in Eq. (25). Therefore, we first project the system
Hamiltonian to the subspace spanned by |�0,1〉,

Hs = δ

2
(|�1〉 〈�1| − |�0〉 〈�0|) ≡ − δ

2
Sz, (30)

where δ is the small energy splitting between |�0,1〉. By
considering the system-bath coupling up to second order in
κi and γ

q

i , we derive an effective spin-bath Hamiltonian (see
Appendix A for details)

H eff
sb = Sx

N∑
i=1

[ ∑
k

κik

λ

ω0

(
ca
ik + c

a†
ik

)

+
∑

k

γ x
ik

(
cx
ik + c

x†
ik

) − e−2λ2/ω2
0

4Jeff

×
∑

q=y,z

∑
kl

(1 + δi1 + δiN )γ q

ikγ
q

il

(
2c

q†
ik c

q

il + δkl

)]
.

(31)

The first two terms are the first-order effects that come from
ai + a

†
i and σi . From ai |�0(1)〉 = λ/ω0|�1(0)〉 and σx

i |�0(1)〉 =
|�1(0)〉, it is evident that these noises can depolarize the states
in the first order. Interestingly, however, the structure of the
wave function of |�0,1〉 allows a partial protection against σy

and σz noises. Note that

〈�s | σy,z

i |�s ′ 〉 = 0 (32)

with s,s ′ = 0,1. Therefore, the noises along the σ
y,z

i directions
can only affect the states from the second-order process. The
third term in Eq. (31) comes from these noises. Not only is the
second-order process energetically suppressed by the factor
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1/Jeff , which is the largest energy scale for the effective spin-
bath system, but also there is an exponential suppression by the
factor e−2λ2/ω2

0 . The latter is reminiscent of the Franck-Condon
effect and comes from the exponentially small overlap between
the cavity states coupled to different qubit states in Eq. (25).
By neglecting the second-order term and making the usual
rotating-wave approximation for the system-bath coupling, the
effective system-bath coupling Hamiltonian reads as

H eff
sb =

N∑
i=1

(
Ca

i + Cx
i

)
S+ +

N∑
i=1

(
C

a†
i + C

x†
i

)
S− (33)

with

Ca
i =

∑
k

κik

λ

ω0
ca
ik, Cx

i =
∑

k

γ x
ikc

x
ik (34)

and S± = (Sx ± iSy). In Appendix B, we derive a master
equation for the system density matrix using the above
system-bath Hamiltonian, which has the standard form of the
master equation

ρ̇s(t) = �n̄(δ,T )D[S+]ρs + �[n̄(δ,T ) + 1]D[S−]ρs (35)

with D[O]ρ = 1
2 (2OρO† − ρO†O − O†Oρ). The rate is

given by

� ≡
N∑

i=1

(
λ2

ω2
0

�a
i + �x

i

)
, (36)

where �a
i is the cavity decay rate for the ith cavity and �x is

the decoherence rate for the ith physical qubit. Therefore, the
decoherence rate for the |�0,1〉 is nothing but a simple sum of
decay rates and relaxation rates of the cavities and qubits, re-
spectively, comprising the cQED arrays. Assuming that �a

i =
�a and �x

i = �x for any i, the rate simply becomes N ( λ2

ω2
0
�a +

�x). The decoherence rate is estimated to be � ∼ 1 MHz with
N = 10, the intrinsic cavity decay rates �a ∼ 5 kHz,33 the
qubit relaxation rate �x ∼ 100 kHz,34 and the ratio λ/ω0 ∼ 2.
In Sec. V, we propose a scheme to dispersively measure
the states |�0,1〉 using an additional cavity. The coupling
strength between the states |�0,1〉 and the additional cavity
field is estimated to be much larger than the decoherence rate,
indicating that the macroscopic ground states are measurable.

B. Disorder

Due to imperfection in fabrication of the circuit QED
arrays, inhomogeneity in system parameters is inevitable. The
cavity frequency ω0, the qubit transition frequency �, and
the coupling strength λ can be different from one cQED
to the other. The photon hopping amplitude J also can vary
from site to site. For our effective spin Hamiltonian in Eq. (17),
the inhomogeneity leads to site-dependent transverse-field
strength and Ising interaction, that is, an inhomogeneous
transverse-field Ising model

H inhomo
Ising = −

∑
i

�iτ
z
i −

∑
i

J eff
i τ x

i τ x
i+1. (37)

We note that the inhomogeneous Hamiltonian conserves the
parity symmetry [

H inhomo
Ising ,P

] = 0 (38)

with

P =
N∏

i=1

τ i
z . (39)

Moreover, the states |�1(0)〉 also have well-defined parity.
Therefore, the ground states will be robust to small fluctuations
in �i and Ji . We thus conclude that the macroscopic ground
states |�0〉 and |�1〉 can be kept well protected by a careful
design of the physical qubits in the system.13

V. DETECTION SCHEME

In this section, we suggest a scheme to measure the
macroscopic ground states of the circuit QED arrays. It can
be also interpreted as detecting the Majorana bound states.
Our proposal consists only of an additional empty resonator
coupled to the resonator at the end of the circuit QED chain (see
Fig. 3). Consider a resonator with a frequency ωd capacitively
coupled to N th cavity, so that we have

Hd = Jd (a†
Nad + aNa

†
d ) + ωda

†
dad, (40)

where aN represents the field operator of the N th cavity,
and ad the field operator of the detection cavity. As shown
earlier, the N th cavity’s creation and annihilation operators are
equivalent to λ/ω0τ

x
N for the N th effective spin. Moreover, for

the nonlocal spin qubits, τ x
i is equivalent to Sx = |�0〉 〈�1| +

|�1〉 〈�0| for any i as τ x
i |�s〉 = |�1−s〉 (s = 0,1). Therefore,

assuming that J̃d ≡ Jdλ/ω0 � Jeff , the low-energy effective
Hamiltonian (30) combined with the detection Hamiltonian
(40) leads again to the Rabi Hamiltonian

HRabi = − δ

2
Sz + J̃dS

x(ad + a
†
d ) + ωda

†
dad . (41)

Here, we can make the rotating-wave approximation, then the
Hamiltonian reduces to the Jaynes-Cummings Hamiltonian.
Therefore, by just adding an empty resonator at one end of the
circuit QED array, we can realize a circuit QED Hamiltonian
for the two levels |�0,1〉. It allows us to tap into the standard
techniques available for the circuit QED to measure the
macroscopic ground states. Moreover, the coupling strength

Detection 
Resonator

1 2 N

Two-Level System

FIG. 3. (Color online) A detection scheme for the nearly degener-
ate ground states of the circuit QED arrays. The detection resonator is
capacitively coupled to the N th resonator of the chain. This capacitive
coupling leads to a coherent coupling between the nearly degenerate
ground states and the detection resonator. In other words, the circuit
QED arrays as a two-level system and the detection resonator as a
cavity, the proposed setup realizes a circuit QED system. It allows
the dispersive measurement of the two ground states by probing the
detection resonator.
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Jd can have 1 ∼ 100 MHz, while the decoherence rate for the
macroscopic ground states is around 1 MHz as estimated in
Sec. IV. Therefore, the detection circuit QED Hamiltonian
in Eq. (41) realizes the strong-coupling regime. The effects
of noises do destroy the coherence of the macroscopic ground
states or the Majorana bound states, but they can be detected us-
ing the additional cavity within the coherence time of the states.

VI. EXPERIMENTAL FEASIBILITY

Finally, we examine the experimental feasibility of the
ideas explained above, estimating possible values of physical
parameters of the system. Two requirements must be satisfied:
First, the two ground states of each cQED in the system
must be nearly degenerate and well separated from higher
excitations. In Fig. 2(a) are plotted the energies of individual
circuit QED Hamiltonian (1) in the resonant case (ω0 = �).
Figure 2(b) plots ω0

λ i〈↓|ai |↑〉i to illustrate how good (its
value close to 1) the approximation ai = λ/ω0τ

x
i is. One

can see that λ ∼ 2ω0 suffices for the requirement. Second,
the system should be in the magnetically ordered phase
(in terms of the effective TFIM) � < Jeff or equivalently
� exp[−2(λ/ω0)2] < 4J (λ/ω0)2. This requirement is satisfied
provided that J > 10−5ω0. The desired coupling strength λ >

2ω0 seems achievable for the fluxonium coupled inductively
to the superconducting resonator.21 Moreover, J > 10−5ω0 is
also realistic for the superconducting resonators, with J in the
range of a few MHz.

VII. CONCLUSION

We have found several intriguing properties of the two
nearly degenerate ground states of a chain of coupled
circuit QED systems in the ultrastrong-coupling regime.
These ground states show maximal entanglement between
macroscopic quantum states of radiation fields and states of
qubits over a large scale, and are mathematically equivalent to
Majorana bound states. By attaching an additional cavity to the
arrays, one may realize a circuit QED Hamiltonian between
the nearly degenerate ground states and the additional cavity,
as well as achieve the strong-coupling regime. It would allow
one to detect the ground states, equivalent to the Majorana
bound states.

Note added. Recently, we have noticed a closely related
papers.35 While they focus on the phase transition of the circuit
QED chain, we are mainly concerned about the quantum
properties of the nearly degenerated ground states on one
side of the phase transition. In this respect, both works are
complementary to each other.
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APPENDIX A: EFFECTIVE SYSTEM-BATH
HAMILTONIAN

In this appendix, we derive the effective system-bath Hamil-
tonian given in Eq. (31) using the second-order perturbation

theory. From the system-bath Hamiltonian in Eq. (29), we first
examine the terms with ai + a

†
i and σx

i ,

H
(1)
sb =

N∑
i=1

∑
k

κik(ai + a
†
i )

(
ca
ik + c

a†
ik

)

+
N∑

i=1

∑
k

γ x
ikσ

x
i

(
cx
ik + c

x†
ik

)
. (A1)

The matrix elements are

〈�0|H (1)
sb |�0〉 = 〈�1| H (1)

sb |�1〉 = 0,

〈�0|H (1)
sb |�1〉 = 〈�1| H (1)

sb |�0〉

=
N∑

i=1

∑
k

(
κik

λ

ω0

(
ca
ik + c

a†
ik

) + γ x
ik

(
cx
ik + c

x†
ik

))
.

(A2)

Therefore, the terms with ai + a
†
i and σx

i can depolarize the
two levels Sz in the first order in κi and γ x

i :

H
(1)
sb = Sx

[
N∑

i=1

∑
k

κik

λ

ω0

(
ca
ik + c

a†
ik

)

+
N∑

i=1

∑
k

γ x
ik

(
cx
ik + c

x†
ik

)]
. (A3)

Note that the λ/ω0 factor comes from the amplitude of the
coherent states in |�0,1〉. Now, we look at the terms with σ

y

i

and σ z
i :

H
(2)
sb =

∑
q=y,z

N∑
i=1

∑
k

γ
q

ikσ
q

i

(
c
q

ik + c
q†
ik

)
. (A4)

As noted earlier, the first-order contribution from these noise
sources vanishes 〈�s |σy,z

i |�s ′ 〉 = 0 with s,s ′ = 0,1. Although
the exact formula for the second-order perturbation requires
knowledge of the eigenfunctions for excited states, we can
estimate the order of magnitude by considering the elementary
excitations. For the transverse-field Ising model with a ferro-
magnetic coupling, the elementary excitations that can be ex-
cited from the magnetically ordered ground states are those that
flip mth pseudospin from the ordered states in Eq. (24), that is,

∣∣�e+
m

〉 = |−λ/ω0〉m|−〉m
N∏

i �=m

|λ/ω0〉i |+〉i ,
(A5)∣∣�e−

m

〉 = |λ/ω0〉m|+〉m
N∏

i �=m

|−λ/ω0〉i |−〉i

with all of the energy is approximately above 4Jeff from the
ground states, except for m = 1,N whose energy is above
2Jeff . The transition matrix then reads as

N∑
m=1

∑
p=±

(1 + δm1 + δmN )
〈�s | H (2)

sb

∣∣�ep
m

〉 〈
�

ep
m

∣∣H (2)
sb |�s ′ 〉

4Jeff
.

(A6)

To calculate this, we first make the rotating-wave
approximation on H

(2)
sb , and define the lowering and

raising operators for the x-direction spin σx±
i = 1

2 (σ z
i ∓ iσ

y

i ).
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The act of the operators on the ground states leads to

σx+
n |�s〉 = (−1)s |−λ/ω0〉n|+〉n

N∏
i �=n

|−λ/ω0〉i |−〉i , (A7)

σx−
n |�s〉 = |λ/ω0〉n|−〉n

N∏
i �=n

|λ/ω0〉i |+〉i , (A8)

which then leads to〈
�e−

m

∣∣ σx+
n |�s〉 = δnm(−1)se−2λ2/ω2

0 , (A9)〈
�e+

m

∣∣ σx−
n |�s〉 = δnme−2λ2/ω2

0 . (A10)

The exponential factor e−2λ2/ω2
0 is an overlap between coherent

states with an amplitude λ/ω0 and opposite phases. From this,
we obtain the second-order system-bath Hamiltonian

H
eff,2
sb = (S0 − Sx)

e−4λ2/ω2
0

4Jeff

∑
q=y,z

N∑
i=1

∑
kl

(1 + δi1 + δiN )

× γ
q

ikγ
q

il

(
2b

q†
ik b

q

il + δkl

)
. (A11)

After neglecting the identity term S0 and combined with the
first-order term, we have arrived at Eq. (31).

APPENDIX B: MASTER EQUATION

In this section, we derive the master equation in Eq. (35)
starting from the effective system-bath coupling Hamiltonian
in Eq. (33). We note that the bath correlation function for
C ≡ ∑

i C
a
i + Cx

i is a sum of the correlation function for each
bath operator, that is,

〈C†(t)C(t ′)〉 =
N∑

i=1

〈
C

a†
i (t)Ca

i (t ′)
〉 + N∑

i=1

〈
C

x†
i (t)Cx

i (t ′)
〉

=
N∑

i=1

∑
k

κ2
ik

λ2

ω2
0

eiωa
ik (t−t ′)n̄

(
ωa

ik,T
)

+
N∑

i=1

∑
k

γ 2
ike

iωx
ik (t−t ′)n̄

(
ωx

ik,T
)
, (B1)

where n̄(ωa(x)
ik ,T ) is an average occupation number for the bath

in the thermal equilibrium. Likewise, we have

〈C(t)C†(t ′)〉 =
N∑

i=1

∑
k

κ2
ik

λ2

ω2
0

e−iωa
ik (t−t ′)[n̄(

ωa
ik,T

) + 1
]

+
N∑

i=1

∑
k

γ 2
ike

−iωx
ik (t−t ′)[n̄(

ωx
ik,T

) + 1
]
.

(B2)

The Born-Markov master equation involves a time integral of
the bath correlation functions∫ ∞

0
dτ e−iδτ 〈C†(t)C(t − τ )〉 = n̄(δ,T )

2

N∑
i=1

(
λ2

ω2
0

�a
i + �x

i

)
(B3)

and ∫ ∞

0
dτ e−iδτ 〈C(t)C†(t − τ )〉

= n̄(δ,T ) + 1

2

N∑
i=1

(
λ2

ω2
0

�a
i + �x

i

)
, (B4)

where δ is the energy splitting between |�0,1〉, τ = t − t ′ and
the rates are defined as follows:

�x
i = 2πgx

i (δ)
[
γ x

i (δ)
]2

, (B5)

�a
i = 2πga

i (δ)[κi(δ)]2 (B6)

with g
x,a
i being the density of states of each bath. We have

neglected terms corresponding to the Lamb shift. Finally, we
arrive at the master equation in the Lindblad form

ρ̇s(t) = �

2
n̄(δ,T )[2S+ρs(t)S− − S−S+ρs(t) − ρs(t)S−S+]

+ �

2
[n̄(δ,T ) + 1][2S−ρs(t)S+ − S+S−ρs(t)

− ρs(t)S+S−]. (B7)
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S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, Nature (London)
445, 896 (2007).
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