

Spin transport in a semiconductor channel

Condensed Matter Seminar, Korea University

Hyun Cheol Koo

Center for Spintronics, Korea Institute of Science and Technology, Korea and KU-KIST Graduate School of Converging Science and Technology, Korea University, Korea

March 9, 2015

Spintronics Group in KIST

12 regular researchers,25 postdocs & students

탁월한 연구성과

스핀 제어 소자 분야의
 NSC급 논문 등 질적 양적

성과 창출

● 차세대 스핀소자 분야

의 다수의 핵심 특허 보유

Control of Spin Precession in a Spin-Injected Field Effect Transistor Hyun Cheol Koc, et al. Science 325, 1515 (2009); DOI: 10.1126/science.1173087

Control of Spin Precession in a Spin-Injected Field Effect Transistor

LETTERS

Interdimensional universality of dynamic interfaces

Oscillatory spin-polarized tunnelling from silicon quantum wells controlled by electric field

LETTER

Magnetic-field-controlled reconfigurable semiconductor logic

doi:10.1038/nature11817

Electrical detection of coherent spin precession using the ballistic intrinsic spin Hall effect Won Young Chil¹², Hyung-jun Kim¹, Joonyeon Chang', Suk Hee Han¹, Hyun Cheel Kool^{2,4} and Mark Jahnos

- Cluster MBE를 비롯한
 - 스핀소재/소자용 전용 장비보유
- KIST Micro/Nano
 FAB과 직접 연계한
 인프라 시스템 구축

Research Fields

Experimental Facilities

Cluster MBE system

Clean room facilities (495 m², 69 equipments)

E-beam lithography system

Physical Property Measurement System

Ion Beam /Plasma Etcher

Why spintronics?

International Technology Roadmap for Semiconductors (2013)

Spintronics-related field

Two fascinating devices in semiconductor spintroncis

Spin-FET

Spin Hall Transistor

(Science 2009)

(Nature Nanotechnology 2015)

Main Physics

Rashba effect: When the perpendicular electric field exists, the flow of electrons induces the effective magnetic field.

 \rightarrow Gate control of spin orientation

Spin Hall effect: The direction of the carrier deviation depends on the spin orientation.

→ Realization of spin-charge conversion

Difficulties for developing spin transistor

Spin transport channel

Spin field effect transistor (spin-FET)

Datta and Das, APL 1990

$$H_{R} = \alpha \ (\vec{\sigma} \times \vec{k}) \cdot \hat{z}$$

Spin precession angle for the electron traveling the channel length L

$$\Delta \theta = \frac{2m\alpha L}{\hbar^2}$$

- Spin injection from FM1
- Spin precession by Rashba spin-orbit interaction.
- > Spin detection at FM2 after $\Delta \theta$ precession

H. C. Koo et al. Material : InAs quantum well structure

InAs (2 nm)				
Ino.52Alo.48As (20 nm)				
Ino.53Gao.47As (13.5 nm)				
InAs quantum well (2 nm)				
Ino.53Gao.47As (2.5 nm)				
Ino.52Alo.48As (6 nm)				
n+ In _{0.52} Al _{0.48} As (7 nm) , n= 4 x 10 ¹⁸ /cm ³				
Ino.52Alo.48As (buffer)				
	_			

Semi-insulated InP(100)

Temperature (K)	Carrier Density (×10 ¹² cm ⁻²)	Mobility (cm ² /Vsec)	Sheet resistance (Ω)
300	~2	~10000	~250
1.8	~2	~60000	~45

Large spin-orbit interaction parameter : $\alpha \approx 1.0 \times 10^{-11} \text{ eVm} (T = 1.8 \text{ k})^{1}$

H. C. Koo et al. Energy band profile of the InAs quantum well for

InAs (2nm)				
In _{0.52} Al _{0.48} As (20 nm)				
In _{0.53} Ga _{0.47} As (13.5 nm)				
InAs QW (2nm)				
In _{0.53} Ga _{0.47} As (2.5 nm)				
In _{0.52} Al _{0.48} As (6 nm)				
n+ In _{0.52} Al _{0.48} As (7 nm)				
In _{0.52} Al _{0.48} As (300 nm)				
InP substrate				

Only one quantum level exists below the Fermi energy.

No magneto-intersubband scattering

Spin-orbit interaction (Rashba effect)

: When the perpendicular electric field (E_z) exists, the flow of electrons (k_x) in two-dimensional electron gas (2-DEG) produces unbalanced population of spin up and down electrons due to the effective magnetic field (B_y) induced by so-called Rashba effect.

Shubnikov-de Haas (SdH) Oscillation

H. C. Koo et al. Shubnikov-de Haas oscillations in our InAs

$$\Delta(\frac{1}{B}) = \frac{2e}{h} \frac{1}{n_{2D}}$$

$$n_{2D} = n_{\uparrow} + n_{\downarrow}$$

Zero-field spin splitting

• Beating pattern in R_{xx}

$$n_{\uparrow} - n_{\downarrow} = \frac{e}{h} \frac{1}{\Delta(1/B)_{beat}}$$

$$\Delta E = \frac{\pi \hbar^2}{m^*} (n_{\uparrow} - n_{\downarrow})$$

Using the observed ΔE , $\alpha = \Delta E/(2k_F) = \Delta E / (2\pi n_{2D})^{0.5}$

Temperature dependence of SdH measurement

Major two peaks are not intermixing term between 1st and 2nd sub-band.

Gate voltage dependence of SdH oscillations

H. C. Koo et al. Science 325,1515 (2009)

Gate voltage dependence of $\boldsymbol{\alpha}$ and carrier density

H. C. Koo et al. Science 325,1515 (2009)

Rashba constant control using doping levers

K.-H. Kim et al. Appl. Phys. Lett. 97,012504 (2010)

Crystal direction dependence of Rashba (α) and Dresselhaus (β) effects

Y. H. Park et al. Appl. Phys. Lett. 103, 252407 (2013)

Separation of Rashba and Dresselhaus term

Y. H. Park et al. Appl. Phys. Lett. 103, 252407 (2013)

Spin-FET operation

Semiconductor spin-valve : NiFe/(InAs-2DEG)/NiFe

Non-local measurement (Spin accumulation)

H. C. Koo et al. Local spin valve measurement at T = 20

H. C. Koo et al. Appl. Phys. Lett. 90,022101 (2007)

Non-local measurement

Ferromagnetic injector and detector

Johnson and Silsbee, Phys. Rev. B **37**, 5312 (1988) Johnson, J. Appl. Phys. 75, 6714 (1994) Zutic et al., Rev. Mod. Phys. **76**, 323 (2004)

Mechanism of non-local signal

FM1	Channel	FM2	FM2
		parallel	anti-parallel

A clear spin valve signal by non-local measurement is observed at 1.8K.

H. C. Koo et al. Science 325,1515 (2009)

Magnetization direction dependence of spin precession

Magnetization of FM should be aligned in either x or z direction.

Gate control of spin precession

Magnetization configuration

Measurement at 1.8K

H. C. Koo et al. Science 325,1515 (2009)

H. C. Koo et al.

Fitting of Spin FET signals

Period of oscillation signal when $L = 1.65 \ \mu m$: ~ 2.5 V when $L = 1.25 \ \mu m$: ~ ~ $3 \ V_{31}$

H. C. Koo et al.

H. C. Koo et al. Science 325,1515 (2009)

Spin precession signal and mean free path

H. C. Koo et al. J. Phys. D: Appl. Phys. (2011)

Spin precession signal with a perpendicular magnetization

J. H. Kim et al. J. of Magnetism and Magn. Mater. (in press)

Spin Hall effect in a semiconductor channel

Spin Hall Transistor

Spin Hall effect and carrier movement.

H. C. Koo et al.

Spin Hall voltage as a function of Magnetization direction

Inverse spin Hall effect

 $B_a \perp B_R$:

- We observed inverse spin Hall effect.
- The sign of spin Hall voltage is determined by the sign of *M* and *I*.

$$B_a // B_R$$
:
No Spin precession

W. Y. Choi et al. Nature Nanotechnol. 10, 666 (2015)

H. C. Koo et al.

Direct spin Halll effect

$$B_a \perp B_R$$
:

• We observed direct spin Hall effect.

•
$$\Delta V_{\rm H, direct} = \Delta V_{\rm H, inverse}$$

W. Y. Choi et al. Nature Nanotechnol. 10, 666 (2015)

H. C. Koo et al.

W. Y. Choi et al. Nature Nanotechnol. 10, 666 (2015)

Ballistic spin Hall effect

- The Datta–Das conductance oscillation are clearly seen.
- The solid line fit includes an exponential decay e^{-L/l} governed by the mean free path of ballistic trajectories. (*l* = 1.61 µm)

W. Y. Choi et al. Nature Nanotechnol. 10, 666 (2015)

H. C. Koo et al.

W. Y. Choi et al. Nature Nanotechnol. 10, 666 (2015)

 Gate controlled spin Hall signal is nice matched with gate dependence of Rashba parameter.

H. C. Koo et al.

Gate control: application to complementary device

When the *M* is reversed, the injected electrons have spins with opposite orientation and the sinusoidal trajectories are shifted in phase by 180°.
 → Complementary logic is possible.

- All electric spin injection was achieved in an InAs quantum well layer.
- We determined the absolute values of the Rashba and Dresselhaus parameters separately.
- Spin-FET signal was detected in the quasi-ballistic regime.
- Ballistic spin Hall voltage in a semiconductor channel was observed using direct and inverse spin Hall effect.
- Spin Hall signal was modulated by the gate voltage.

Future direction

: Total Solution of Mobile Electronics

