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Abstract
One of the actual challenges of spintronics is the realization of a spin
transistor allowing control of spin transport through an electrostatic gate. In
this paper, we report on different experiments which demonstrate gate
control of spin transport in a carbon nanotube connected to ferromagnetic
leads. We also discuss some theoretical approaches which can be used to
analyse spin transport in these systems. We emphasize the roles of the
gate-tunable quasi-bound states inside the nanotube and the coherent
spin-dependent scattering at the interfaces between the nanotube and its
ferromagnetic contacts.

(Some figures in this article are in colour only in the electronic version)

1. Introduction: nanospintronics

The quantum mechanical spin degree of freedom is now widely
exploited to control current transport in electronic devices. For
instance, the readout of magnetic hard discs is based on the
spin-valve effect, i.e. the tunability of a conductance through
the relative orientation of some ferromagnetic polarizations
[1]. However, realizing spin injection in nanostructures,
e.g. mesoscopic conductors or molecules, would allow us to
implement further functionalities. For example, the realization
of a ‘spin transistor’ would allow electric field control of the
spin-valve effect through an electrostatic gate [2, 3]. In this
context, carbon nanotubes are particularly interesting, because
they should exhibit a long spin lifetime and can be contacted
with ferromagnetic materials. In this paper, we present the
state of the art regarding the realization of spin-transistor-like
devices with carbon nanotubes. In section 2, we introduce
the basics of the spin-valve effect. In section 3, we present
a theoretical description of spin transport in quantum wires
with ferromagnetic contacts. We put special emphasis on
the roles of the gate-tunable resonant states inside the wire
and the coherent spin-dependent scattering at the boundaries

of the wire. In section 4, we present the state of the art
in contacting carbon nanotubes with ferromagnetic materials
and evoke different contact effects which could mimic spin-
dependent transport phenomena. In section 5, we review
different experiments which have demonstrated gate control
of spin transport in carbon nanotubes so far. Eventually, we
give some conclusions and perspectives in section 6.

2. The spin-valve geometry

The most standard method to inject or detect spins in an
insulating or conducting element M is to use the spin-
valve geometry [4, 5], in which M is connected to two
ferromagnetic leads L and R (figure 1, left). One has to
measure the conductances GP and GAP of the spin valve for
lead magnetizations in the parallel (P) and antiparallel (AP)
configurations. This requires the use of two ferromagnets
with different coercive fields (HcL and HcR, respectively) for
switching one magnetization with respect to the other with the
help of an external magnetic field H (figure 1, right). The
spin signal or magnetoresistance is then defined as the relative
difference MR = (GP − GAP)/GAP.
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Figure 1. Left: electrical diagram of a circuit with the spin-valve
geometry. The element M is connected to two ferromagnetic leads L
and R, in which the electronic density of states has magnetic
polarizations �pL and �pR. The three elements in series form a spin
valve, which is voltage biased with a source–drain voltage Vsd. A
magnetic field �H is applied to the circuit. Right: typical shape of
the resistance curve r(H) measured in the spin valve while
increasing (blue (dark grey) line) and then decreasing (red (light
grey) line) H. Since the two contacts L and R have different coercive
fields HcL and HcR, it is possible to selectively reverse the directions
of �pL and �pR during this cycle. This introduces a hysteretic pattern
in the r(H) curve, from which the value of the magnetoresistance
MR = (GP − GAP)/GAP of the spin valve can be obtained. Here,
one has MR > 0.

Let us consider the situation in which the element placed
between the two ferromagnetic contacts is a tunnelling barrier
with a transmission probability independent of energy [6].
This case, usually referred to as Jullière’s model, describes
the principle of magnetic memories and magnetic read heads.
From Fermi’s golden rule, the transmission probability of the
barrier for spins σ ∈ {↑,↓} is proportional to the electronic
densities of states at the Fermi energy Nl,σ = Nl(1 + σηlpl)

for spins σ at both contacts, with l ∈ {L, R} and ηl ∈
{+1,−1} the direction of the magnetization at contact l.
Here, Nl is the spin-averaged density of states and pl is
the spin polarization at contact l. The conductance GP

of the barrier in the parallel configuration is proportional
to NLNR[(1 + pL)(1 + pR) + (1 − pL)(1 − pR)] whereas
the conductance GAP in the anti-parallel configuration is
proportional to NLNR[(1 + pL)(1 − pR) + (1 − pL)(1 + pR)].
This leads to

MR = 2pLpR

1 − pLpR
.

If the spin polarizations pL and pR have the same sign, the
magnetoresistance of the device is positive because the current
flowing in the antiparallel configuration is lower due to the
imbalance between NL,σ and NR,σ .

In the following, we consider the case in which element
M is a carbon nanotube. In contrast with Jullière’s model of
a tunnelling barrier, the transmission of the nanotube cannot
be considered as constant with energy due to the existence of
quasi-bound states between the two ferromagnetic contacts.
Furthermore, it is possible to tune the energy of these bound
states with an electrostatic gate. This significantly modifies
the behaviour of carbon-nanotube-based spin valves, as we are
going to explain theoretically in the next section.

3. Spin transport in finite-size quantum wires

Carbon nanotubes can display a large variety of behaviour,
depending on their intrinsic properties and on the
characteristics of their electrical contacts. Even in the case
of a clean nanotube (i.e. with no structural defects), electronic

Figure 2. Electrical diagram of a ballistic wire w of length �
connected to ferromagnetic leads L and R with magnetic
polarizations �pL and �pR. The wire is voltage biased with a
source–drain voltage Vsd and capacitively coupled to a gate voltage
source Vg. Inset: scattering description of the interface between the
wire and a contact. We use transmission and reflection amplitudes
t
ε,n,σ
l and r

ε,n,σ
l for electrons with spin σ of transverse channel n,

incident from element l ∈ {L, R, w} with direction ε (ε = + for
right-going incident electrons and ε = − for left-going incident
electrons).

transport can occur in different regimes, depending on the
transparency of the contacts. For high contact resistances
R > h/e2, a nanotube can behave as a quantum dot, in which
the Coulomb blockade determines the transport properties [7],
whereas for low contact resistances R < h/e2, transport is
mainly determined by quantum interference [8]. Here, we
will mainly consider these two situations. For simplicity, we
will model the nanotube as a one-dimensional quantum wire.

3.1. Spin-dependent transport in a non-interacting
ballistic wire

Although electron–electron interactions should be of primary
importance in one-dimensional quantum wires, it is instructive
to first consider a non-interacting picture. In addition, as we
will see in section 5, such a simplified picture captures the
main features of some available experiments.

3.1.1. Transmission of a F–wire–F ballistic system. We
consider the circuit of figure 2, with w a non-interacting
ballistic wire of length � contacted to two ferromagnetic leads
L and R. In the non-interacting limit, electronic transport
through this device can be described using a scattering
approach [9]. As represented in the bottom inset of figure 2,
this description involves complex amplitudes of transmission
and reflection t

ε,n,σ
l and r

ε,n,σ
l for electrons with spin σ of

transverse channel n, incident from element l ∈ {L, R, w}
with direction ε (ε = + for right-going incident electrons and
ε = − for left-going incident electrons). Assuming that the
different channels n are not coupled by interfacial scattering,
the behaviour of the device only depends on the transmission
probabilities T

n,σ
L(R) = ∣∣t+(−),n,σ

L(R)

∣∣2
and on the reflection phases

ϕ
n,σ
L = arg

(
r−,n,σ

w

)
and ϕ

n,σ
R = arg

(
r+,n,σ

w

)
at the side of the

wire. Indeed, the conductance of the circuit in configuration
P[AP] can be calculated from the expression

GP[AP] = GQ

∑
n,σ

∫ +∞

−∞
T

n,σ
P[AP](E)(−∂f (E)/∂E), (1)
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Figure 3. Picture of the resonant tunnelling mechanism for very asymmetric barriers. Here, we assume T σ
L � T σ

R and PL = PR. A bigger
resistance element represents a higher resistance value. Off resonance (left panels), the transmission probability T

σ
P[AP] of the circuit for

spins σ scales with T σ
L T σ

R in the P[AP] configuration. This leads to a positive MR like in Jullière’s model. On resonance (right panels),
T

σ
P[AP] scales with 4T σ

L /T σ
R , which leads to a negative MR.

where f (E) = [1 + exp(E/kBT )]−1 is the Fermi–Dirac
distribution and where

T
n,σ
P[AP] = T

n,σ
L T

n,σ
R∣∣1 − [(

1 − T
n,σ

L

)(
1 − T

n,σ
R

)]1/2
ei(ϕn,σ

L +ϕ
n,σ
R +2δ0+σγ n

H)
∣∣2

(2)

is the probability that an electron of channel n with spin
σ coming from lead L (R) is transmitted to lead R (L).
Here, we have introduced the orbital phase δ0 = �kn

Fw(Vg)

acquired by an electron upon crossing the wire once and
γ n

H = gµBH�
/
h̄vn

Fw, with H the external magnetic field. We
call kn

Fw(Vg) the gate-dependent wave vector of electrons of
channel n inside the wire, vn

Fw(Vg) the corresponding Fermi
velocity, g the Landé factor and µB the Bohr magneton. The
denominator of equation (2) accounts for the existence of
resonant states which are due to multiple reflections between
the two contacts. These resonances lead to peaks in the
GP[AP](Vg) curves. In the case of ferromagnetic contacts,
the interfacial scattering properties depend on spin and on
the configuration c ∈ {P, AP} of the ferromagnetic electrodes
(we omit the index c in T

n,σ
L(R) and ϕ

n,σ
L(R) for brevity). In the

following, we investigate the effects of a finite spin polarization
of the tunnelling rates P n

l �= 0 and of a spin dependence of
interfacial phase shifts (SDIPS), i.e. 	ϕn

l �= 0, with

T
n,σ
l = T n

l

(
1 + ηlσP n

l

)
, ϕ

n,σ
l = ϕn

l + ηlσ
	ϕn

l

2
,

for l ∈ {L, R}. Here, ηl ∈ {+1,−1} denotes the direction of
the magnetization at contact l.

The quantum wires which we have in mind are carbon
nanotubes. Two different types of carbon nanotubes can be
fabricated: single-wall nanotubes (SWNTs) and multi-wall
nanotubes (MWNTs). A SWNT consists of a single graphene
sheet that is rolled up into a cylinder. A MWNT consists
of a set of coaxially stacked graphene cylinders. In the
case of a SWNT, it is possible to have only two channels
involved in current transport at low voltages (the energy
levels of SWNTs often display a two-fold degeneracy related
to the K–K ′ degeneracy of the energy bands of graphene
[10, 11]). Assuming two identical channels with no coupling,

the behaviour of such a nanotube can be understood from
the study of a one-channel quantum wire, which is presented
in section 3.1.2 (the conductance of the nanotube will be
twice that of the single-channel quantum wire and the
magnetoresistance will be identical). For MWNTs, more
channels are generally involved in the low-voltage electronic
transport. We will thus present in section 3.1.3 the case of a
quantum wire with several channels.

3.1.2. Single-channel case. In this section, we omit the
channel index n. We assume that the gate voltage Vg induces a
shift of the wire electrostatic potential which is small compared
with the Fermi energy of the wire, i.e. αVg � EFw, where
α = Cg/C� is the ratio between the gate capacitance and
the total capacitance of the wire. In this limit, one finds
δ0 = �kFw + (eαVg −EFw)(πNFw/2) where NFw = 2�/πh̄vFw

is the density of states in the wire, and kFw and vFw are the Fermi
wave vector and velocity in the wire, respectively. Therefore,
the resonant peaks in the GP[AP](Vg) curve correspond to the
cancellation of resonant energies of the form

E
σ,j

P[AP] = (
2πj − ϕσ

L − ϕσ
R − σγH

)
(h̄vFw/2�) − eαVg, (3)

with j ∈ Z.

Magnetoresistance of a one-channel wire with no SDIPS. In
this paragraph, we investigate the behaviour of the wire for
	ϕn

l = 0, and thus define resonant energies Ej = E
↑,j

P[AP] =
E

↓,j

P[AP] for γH = 0. From equation (3), the resonant peaks in
the conductance curves are spaced by 	E = Ej+1 − Ej =
hvFw/2� which is usually called the intrinsic level spacing
of the wire. Figure 4 shows with black dashed lines the
conductance GP(Vg) and the magnetoresistance MR(Vg) of
a one-channel wire. For convenience, we have plotted the
physical quantities as a function of δ0 instead of the gate
voltage Vg. The conductance shows resonances with a π-
periodicity in δ0, corresponding to the intrinsic level spacing
	E. Strikingly, the magnetoresistance can become negative
for certain values of Vg which correspond to a resonance in GP.
This is in contrast with the early Jullière’s model evoked in
section 2. In order to understand this situation (see figure 3),

S80



Nanospintronics with carbon nanotubes

Figure 4. Linear conductance GP (top panels) and magnetoresistance MR (bottom panels) for a single-channel wire as a function of the
spin-averaged phase δ0 acquired by electrons upon crossing the wire (δ0 is linear with Vg in the limit considered here, see the text). We show
the results in the case of no SDIPS (black (dashed) lines) and for a value of SDIPS finite but not resolvable in the conductance curves (red
(full) lines). The left and right panels correspond to two different sets of parameters. When the contacts have no SDIPS, the oscillations in
MR(δ0) are symmetric. A low SDIPS (|	ϕP[AP]| � TL + TR) can be detected qualitatively in the MR(δ0) curves because it breaks the
symmetry of these oscillations. In sections 5.2.1 and 5.2.3, we will compare these theoretical results with measurements done in SWNTs
connected to PdNi contacts.

it is convenient to consider the limit of low transmissions
Tl � 1, in which one can expand T

σ
P[AP] around E = Ej (see

[9]) to obtain a Breit–Wigner-like formula [12]

T
σ
P[AP] = T σ

L T σ
R

(πNFw[E − Ej ])2 +
(
T σ

L + T σ
R

)2/
4
. (4)

Off resonance, i.e. when (E − Ej)2 	 (
T σ

L + T σ
R

)/
πNFw,

the transmission probability T
σ
P[AP] of the contact for electrons

with spin σ is proportional to T σ
L T σ

R . This leads to

MR = 2PLPR

1 − PLPR

as in Jullière’s model. At resonance, i.e. when E = Ej , the
situation is different. We will consider for simplicity the very
asymmetric case T σ

L � T σ
R . In this case, equation (4) gives

T
σ
P[AP] = 4T σ

L

/
T σ

R , which leads to

MR = − 2PLPR

1 + PLPR
.

Thus, it clearly appears that the change of sign in the MR
signal is a direct consequence of the existence of quasi-bound
states in the wire.

Role of the spin dependence of interfacial phase shifts
(SDIPS). So far, we have assumed that the interfacial reflection
phases of electrons of channel n coming from the wire
were spin independent, i.e. ϕ

↑
l = ϕ

↓
l for l ∈ {L, R}.

Nevertheless, the interface between a ferromagnet and a non-
magnetic material can scatter electrons with spin parallel
or antiparallel to the magnetization of the ferromagnet with
different phase shifts, because electrons are affected by a
spin-dependent scattering potential at this interface. This spin
dependence of interfacial phase shifts can modify significantly
the behaviour of many different types of mesoscopic circuits,
such as diffusive ferromagnetic/normal/ferromagnetic spin
valves [13], superconducting/ferromagnetic hybrid circuits
[14], Coulomb blockade systems [15, 16] and Luttinger liquids
[17]. Reference [18] has shown that non-interacting ballistic
wires can also be affected by the SDIPS. From equation (3),

in the case of a finite SDIPS, the resonant energies of the one-
channel wire are spin dependent. This allows us to define an
SDIPS-induced effective field hc

SDIPS such that

E↓,j
c − E↑,j

c = gµBhc
SDIPS = ηL	ϕL + ηR	ϕR

πNFw

for c ∈ {P, AP}. Importantly, this effective field is
configuration dependent. For instance, in the case of
symmetric barriers, one has 	ϕL = 	ϕR, thus hP

SDIPS can
be finite in the parallel case, but hAP

SDIPS must vanish in the
antiparallel case due to the symmetry of the problem.

The effects of the effective field hc
SDIPS will depend on its

amplitude. Let us first imagine that the SDIPS effective field is
very strong in the parallel case, i.e. |	ϕL+	ϕR| � TL+TR, and
that the barriers are symmetric, leading to hAP

SDIPS = 0 (one can
imagine obtaining this situation by fabricating a symmetric
device with strongly spin-dependent barriers, by using e.g.
ferromagnetic insulators evaporated between the wire and the
metallic contacts). From equation (2), this would allow us to
resolve the level spin splitting gµBhP

SDIPS in the conductance
curve GP(Vg), and thus to obtain a shift of the conductance
peaks from the P to the AP configurations. A giant MR
effect with a sign tunable with Vg would thus be obtained.
This illustrates that a strong SDIPS would be very useful
for realizing efficient control of spin-dependent transport
in nanowires. Nevertheless, since the appropriate device
fabrication has not been achieved yet, we refer the reader to
[18] for a detailed study of the effects of a strong SDIPS and
focus here on the case of a weaker SDIPS. It is possible that
a weak SDIPS occurs in actual experiments. Indeed, when a
standard ferromagnetic contact material is evaporated directly
on a wire, the interfacial scattering potential which affects the
electrons can already depend on spin.

Figure 4, red (full) lines, shows the conductance GP(Vg)

(top panels) and the magnetoresistance MR(Vg) (bottom
panels) for a device with a weak SDIPS. Although the SDIPS-
induced spin splitting is too weak to be resolved in the
conductance curves for the parameters used here, it modifies
qualitatively the spin-valve behaviour of the device. Indeed,
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Figure 5. Conductance GP (top panel) and magnetoresistance MR
(bottom panel) calculated for a MWNT with two ferromagnetic
contacts, for T = 0 (black lines) and T = 1.85 K (red (grey) lines).
We have assumed that current transport occurs through six
independent channels. We have used PL(R) = 0.2, TL = 0.45, TR =
0.04 and α = 0.01 for all channels. A radius of Rnt = 2.7 nm and a
Fermi level of EF

w = 1 eV have been used for the nanotube in order
to calculate the wave vector kn

Fw associated with channel n ∈
{1, . . . , 6}. Beatings occur in the zero-temperature signals, due to
the combination of the different channels. Therefore, at T = 1.85
K, the MR signal seems to oscillate with a period which is much
larger than the intrinsic spacing between the resonant levels.

when there is no SDIPS, from equation (2), the MR(Vg)

oscillations are always symmetric with Vg. This symmetry
is broken by the SDIPS. This is due to the fact that, in the
presence of a weak SDIPS, the position of the global maximum
corresponding to E

↑,j
c and E

↓,j
c is different for c = P and

c = AP. This effect provides a qualitative way to detect the
presence of a finite SDIPS in the circuit.

3.1.3. Multichannel case. For MWNTs, it is usually
assumed that transport occurs mainly through the outer shell
[19]. However, since the diameter of MWNTs is larger
than that of SWNTs, the spacing between the 1D subbands
of the outer shell is lower [20]. As a consequence, a
multichannel description is a priori needed if one wants to
account for MR. We have evaluated the conductance and
MR from equations (1) and (2), for a MWNT with two
ferromagnetic contacts. In the simple case where there
is no subband mixing, one can determine the transmission
T

n,σ
P[AP](E) occurring in these equations via the wave vector

kn
Fw(Vg) = kFw +

√
(eαVg − EFw)2/(h̄vFw)2 − n2

/
R2

nt, where
Rnt is the radius of the MWNT [21]. For a radius Rnt = 2.7 nm,
the subband spacing amounts to ∼180 meV. As the Fermi
energy shift of MWNTs due to surface adsorbates can be as
high as ∼1 eV [22], up to six subbands can contribute to
charge and spin transport. We have thus taken into account
six subbands in the calculation. Figure 5 shows the calculated
conductance GP (top panel) and the magnetoresistance MR
(bottom panel) for T = 0 (black lines) and T = 1.85 K
(red (grey) lines). We have used contact parameters PL(R) =
0.2, TL = 0.45 and TR = 0.04 for all the channels and a
coupling α = 0.01. For simplicity, we have assumed no
SDIPS. At T = 0, the conductance shows peaks which
correspond to the resonant states in the different channels.
Due to the larger number of channels, the intrinsic energy
spacing between these resonances is reduced. As a result of

the combination of the different conducting channels, beatings
occur for certain regions of gate voltage. Importantly, MR
can become negative, for the same reason as in the one-
channel case. At T = 1.85 K, it is no longer possible
to resolve the single-level resonances. Due to thermal
averaging, the conductance and magnetoresistance are roughly
determined by the envelope of the transmissions. Therefore,
the magnetoresistance shows approximately periodic sign
changes with a period which is much larger than the intrinsic
energy spacing between the resonant states. This type of
behaviour will be illustrated with measurements performed
with MWNTs in section 5.2.2.

3.2. Spin-dependent transport in a quantum dot

The tunnel junctions connecting the ferromagnetic leads to
the nanotubes often have a small capacitance of the order of
10 aF. In such a case, at low temperatures (T < 10 K), a
finite charging energy U = e2/C� is required to add electrons
on a nanotube. The interplay of the Coulomb blockade and
spin-dependent transport phenomena has attracted a lot of
theoretical and experimental interest recently (see for instance
[15, 23–28]). We introduce below a very recent theoretical
development [16] which allows us to address spin transport
in the Coulomb blockade regime corresponding to experiment
[29].

We assume that strong Coulomb interactions are added to
the wire of figure 2, so that we have a quantum dot connected to
ferromagnetic leads. In the interacting regime, the scattering
approach used in the former section is no longer suitable for
describing this system. One can adopt a description based on
the Anderson-like Hamiltonian

H = Hdot + Hleads + Hc,

with

Hdot =
∑
d,σ

ξdσ c
†
dσ cdσ +

∑
d,d ′,σ,σ ′[(d,σ ) �=(d ′,σ ′)]

U

2
ndσ nd ′σ ′ , (5)

Hleads =
∑
k,σ

ξkσ c
†
kσ ckσ , (6)

Hc =
∑
d,k,σ

(
t kdσ c

†
dσ ckσ +

(
t kdσ

)∗
c
†
kσ cdσ

)
. (7)

Here, ξdσ refers to the energy of the dot orbital state d for spin
σ , ξkσ to the energy of lead state k for spin σ and tkdσ is a
hopping matrix element. The index k runs over the electronic
states of leads L and R. We assume that the spin σ is preserved
upon tunnelling, as in section 3.1. Coulomb interactions are
taken into account through the term in U, with ndσ = c

†
dσ cdσ .

Although the notion of interfacial scattering phase is less
natural here than with the scattering approach of section 3.1, it
is possible to take into account the effects related to the SDIPS
in the present interacting model. Indeed, by construction of
Hamiltonian (5), for U = 0, each orbital level ξdσ corresponds
to a resonant level E

σ,j
c of section 3.1, with ξd↓ − ξd↑ =

gµBhc
SDIPS. One can therefore introduce the effective Zeeman

splitting hc
SDIPS in equation (5) as a generalization of the

SDIPS concept to the interacting case. This can be justified
physically on the following basis. In the non-interacting case,
we have considered that the ferromagnetic exchange field leads
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to a spin-dependent interfacial potential, responsible for the
spin-dependent scattering. For a double barrier system, the
ferromagnetic exchange field makes the confinement potential
of electrons on the dot spin dependent as well. This naturally
induces a spin dependence of the orbital energies, which is the
counterpart of the spin splitting of the resonant energies found
in section 3.1.

In the interacting case, the zero-bias conductance of the
circuit can be expressed as [30]

h

e2

Gc

2
=

∑
d,σ

∫ +∞

−∞
dω

∂f (h̄ω)

∂ω

× �L
dσ (h̄ω)�R

dσ (h̄ω)

�L
dσ (h̄ω) + �R

dσ (h̄ω)
Im [Gdσ (ω)] (8)

with, for l ∈ {L, R}, �l
dσ (ξ) = ∑

k 2π
∣∣t kdσ

∣∣2
δ(ξ = ξkσ ), and

Gdσ (ω) = ∫ +∞
−∞ Gdσ (t) eiωt dt with Gdσ (t) = −iθ(t)

〈{
cdσ (t),

c
†
dσ (0)

}〉
. For comparison with the experimental data of

[29], one has to study current transport in the limit in which
the width of conductance peaks displayed by the circuit
is not limited only by temperature but also by the tunnel
rates

(
kBT < �L

dσ + �R
dσ

)
. This requires going beyond

the sequential tunnelling description (see for instance [28]),
i.e. also taking into account high-order quantum tunnelling
processes. For temperatures larger than the Kondo temperature
of the circuit (T > TK), this can be done by calculating Green’s
functions Gdσ (ω) with the equation of motion technique
(EOM) introduced for quantum dot systems by Meir et al
[31].

Single-orbital case. For simplicity, we first consider a one-
orbital quantum dot. Then, the EOM technique leads to [31]

Gdσ (ω) = h̄(1 − 〈ndσ 〉)
h̄ω − ξdσ − �0

dσ + U�1
dσ

h̄ω−ξdσ −U−�0
dσ −�3

dσ

+
h̄〈ndσ 〉

h̄ω − ξdσ − U − �0
dσ − U�2

dσ

h̄ω−ξdσ −�0
σ −�3

dσ

, (9)

where 〈ndσ 〉 = − ∫ +∞
−∞ dω f (h̄ω) Im

[
Gd

σ (ω)
]/

π is the
average occupation of orbital d by electrons with spin
σ . Assuming that the coupling to the leads is energy
independent (broadband approximation), one has �0

dσ =
−i

(
�L

dσ + �R
dσ

)/
2, �3

dσ = −i
(
�L

dσ + �R
dσ

)
and, for i ∈ {1, 2},

�i
dσ =

∑
k

µi(ξkσ )
∣∣tdkσ

∣∣2

h̄ω − ξdσ + ξdσ − ξkσ + i0+

+
∑

k

µi(ξkσ )
∣∣tdkσ

∣∣2

h̄ω − ξdσ − ξdσ − nU + ξkσ + i0+
,

with µ1(ξ) = f (ξ) and µ2(ξ) = 1 − f (ξ). The term
�0

dσ , which is due to the tunnelling of electrons with spin
σ , already occurred in the non-interacting case. Indeed, for
U = 0 and T σ

l � 1, the conductance given by the above
equations can be perfectly mapped onto the non-interacting
conductance found in section 3.1, using Ec

dσ = ξdσ and
T σ

l = πNFw�l
dσ = 2πNFw

∣∣�0
dσ

∣∣. In the interacting case,
Gdσ (ω) also involves �

i,n
dσ,d ′σ ′ terms related to the tunnelling

of electrons with spin σ . Note that Gdσ , ξdσ and �
L(R)
dσ depend

on the configuration c ∈ {P, AP} considered, but for simplicity
we have omitted the index c in those quantities.

Figure 6. Top panels: conductance GP in the parallel configuration
(red (full) lines) and conductance GAP in the antiparallel
configuration (black (dotted) lines) as a function of the gate voltage
Vg, for the circuit shown in figure 2, with w a one-orbital quantum
dot. We have used �L = 0.005U, �R = 0.07U, PL(R) = 0.2,
U/kBT = 30 and hAP

SDIPS = 0. Bottom panels: magnetoresistance
MR (pink (grey) curves) corresponding to the above conductance
plots. The results are shown for gµBhP

SDIPS = 0 (left panels) and
gµBhP

SDIPS = 0.06U (right panels).

Figure 6 shows the conductance Gc in configuration
c ∈ {P, AP} (top panels) and the magnetoresistance MR
(bottom panels) calculated for different values of hc

SDIPS, using
�l

dσ = �l(1 + ηlσPl) for l ∈ {L, R}. The conductance
peak corresponding to level d is split by U due to Coulomb
interactions. For hc

SDIPS = 0 (left panels), we already note
that although the two conductance peaks displayed by GP(Vg)

are very similar, the MR variations corresponding to these two
peaks have different shapes (see also [24]). More precisely,
for the low values of polarization considered here, MR(Vg)

is approximately mirror symmetric from one conductance
peak to the other. This is in contrast with the single-channel
non-interacting case in which MR(Vg) was identical for all
conductance peaks. A finite effective field hc

SDIPS produces
a shift of the conductance peaks from the P to the AP
configurations. For instance, in figure 6, top-right panel, the
left (right) conductance peak is shifted to the right (left) from
P to AP because it comes in majority from the transport of
up (down) spins in the P case. As a consequence, in figure 6,
bottom-right panel, the amplitude of MR is enhanced and it
becomes negative for certain values of Vg. We note that using
a finite SDIPS does not help to obtain similar MR variations
for the two peaks of GP(Vg) because the SDIPS shifts these
two peaks in opposite directions.

Before concluding this section, we point out that, in
principle, hc

SDIPS is not the only term which can lead to
a spin splitting of the dot energy levels. Indeed, the
terms proportional to �1

dσ and �2
dσ in equation (9) can also

renormalize these levels, due to their real part. In the case
of ferromagnetic contacts, this renormalization is different for
the two spin directions. This allows us to define another
type of effective field, hc

U , which is intrinsically taken into
account in the treatment shown here. The effects of hc

U have
been studied in detail by [25] for a quantum dot with non-
collinearly polarized ferromagnetic leads in the sequential
tunnelling regime (see reference [34] of [16]) and by [27] for
a quantum dot in the Kondo regime. Similarly to hc

SDIPS, the
value of hc

U depends on the configuration of the ferromagnetic
electrodes and it must vanish in the AP configuration for
symmetric junctions. Nevertheless, for the low values of

S83



A Cottet et al

Figure 7. Top panels: conductance GP in the parallel configuration
(red (full) lines) and conductance GAP in the antiparallel
configuration (black (dotted) lines), for the circuit of figure 2, with
w a two-orbital quantum dot. We have used identical tunnel rates to
the two orbitals, i.e. �L = 0.0043U, �R = 0.0725U and
PL(R) = 0.4. We have also used U/kBT = 30 and hAP

SDIPS = 0.
Bottom panels: magnetoresistance MR (pink (full) lines)
corresponding to the conductance plots. The results are shown for
gµBhP

SDIPS = 0 (left panels) and gµBhP
SDIPS = 0.3U (right panels).

The two-fold orbital degeneracy allows the restoration locally of an
approximate regularity of the MR(Vg) pattern. This behaviour will
be compared with experimental results in section 5.2.3.

tunnel rates �L(R), polarizations PL(R) and temperatures T used
here, hc

U is much weaker than the finite hc
SDIPS assumed, and it

can therefore not play the same role as hc
SDIPS.

Generalization to a non-degenerate multilevel system. For
simplicity, we have considered in the previous section the one-
orbital case. In practice, other orbital levels close to orbital
d can modify the MR(Vg) pattern. Nevertheless, for non-
degenerate energy levels with a sufficiently large intrinsic level
spacing 	E (see [16]), the two conductance peaks associated
with a given orbital will occur consecutively in Gc(Vg). The
SDIPS will shift these two peaks in the same way as for the
single-orbital model. Therefore, one can still expect changes
of sign in the MR(Vg) curves, with dissimilar MR(Vg) patterns
for the two conductance peaks corresponding to a given orbital
level.

Effect of a two-fold degeneracy of orbital levels. In single-wall
carbon nanotubes, a two-fold orbital degeneracy is commonly
observed, related to the K–K ′ energy band degeneracy of
graphene [10, 11]. To investigate some consequences of this
feature, one can consider a two-degenerate-orbitals model, i.e.
Hamiltonian (5) with d ∈ {K,K

′ } and ξK ′σ = ξKσ . For
simplicity, we assume no coupling between the two orbitals
through higher order dot–lead tunnel processes. We also
assume the same dot–lead coupling and interfacial parameters
for both orbitals. In the non-interacting case, this modification
leaves the MR unchanged (see section 3.1). In the interacting
limit, an orbital degeneracy has more complicated effects on
MR. This was studied with the EOM technique in [16]. We
refer the readers to this reference for details of the calculation
and present here the main results of this approach.

Figure 7 shows the conductance (top panels) and MR
curves (bottom panels) in the two-orbital case, calculated for
different values of hc

SDIPS. In most cases, the curves Gc(Vg)

show four resonances, the first two associated with a single
occupation of K and K ′, and the other two with double

occupation. For hP
SDIPS = hAP

SDIPS = 0 and the parameters
used here, MR remains positive for any value of Vg (left
panels). As in the one-orbital case, a finite hc

SDIPS makes
easier negative MR effects and allows a stronger tunability of
the MR effect with Vg (right panels). Importantly, the effect
of hc

SDIPS again depends on the occupation of the dot and the
MR(Vg) pattern is thus not similar for the four conductance
peaks. Nevertheless, in figure 7, top-right panel, the first two
conductance peaks of GP (peaks 1 and 2) are both shifted to
the left by hP

SDIPS because they are both due in majority to
up spins. This allows us to get a MR pattern approximately
similar for these two peaks, i.e. a transition from positive to
negative values of MR (bottom-right panel). In contrast, peaks
3 and 4 correspond to a transition from negative to positive
values of MR because the associated conductance peaks are
due in majority to down spins. The shape of the MR(Vg)

pattern associated with the transition between peaks 3 and
4 is particular (negative/positive/negative) because, for the
values of parameters considered here, the Coulomb blockade
does not entirely suppress the up spins’ contribution in peak
3. Remarkably, this allows us to obtain, at the left of figure 7,
bottom-right panel, three positive MR maxima which differ in
amplitude but have rather similar shapes. Taking into account
a two-fold orbital degeneracy thus allows us to restore an
approximate local regularity of the MR pattern. Note that for
clarity we have used in figure 7, right panels, a large value of
hP

SDIPS. Nevertheless, the effect persists for lower values of
SDIPS (see figure 14). This behaviour will be compared with
the experimental data of [29] in section 5.2.3.

3.3. Other interacting regimes

In sections 3.1 and 3.2, we have put special emphasis on the
non-interacting regime and on the Coulomb blockade regime
because this is relevant for interpreting the experimental results
available so far (see section 5). However, in principle, a
carbon nanotube connected to ferromagnetic leads can adopt
other types of behaviour. For instance, it could behave as
a quantum dot in the Kondo regime (see e.g. [32]). The
effect of ferromagnetic leads on this system has been studied
theoretically by various authors [26, 27]. A first experimental
study could be realized using C60 molecules, revealing a spin
splitting of the Kondo resonance related to the coupling to the
ferromagnetic leads [33]. Nevertheless, in carbon nanotubes,
the Kondo effect has only been observed with non-magnetic
leads so far [34]. A carbon nanotube can also behave as
a Luttinger liquid due to the interplay between electronic
interactions and the one-dimensional nature of the nanotube
[35, 36]. In a Luttinger liquid, electrons form collective
charge and spin excitations which propagate with different
velocities. The resulting spin–charge separation effect remains
to be observed in an unambiguously accepted way [37].
This is one more fundamental motivation for the study of
spin transport in carbon nanotubes. It has been predicted
that spin transport could provide experimental evidence of
spin–charge separation, in the Fabry–Perot-like regime [38]
corresponding to section 3.1, as well as the incoherent regime
max(eVsd, kBT ) 	 hvFw/� (see [17]). We will not report
on those predictions in detail here because no experimental
realization is available at this time.
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3.4. The spin injection problem

Until now, we have assumed that it was possible to inject
spins reliably in carbon nanotubes. More precisely, in the
framework of the theories presented in sections 3.1 and 3.2,
we have assumed that the spin polarization P n

l of the tunnel
rates was finite. One must wonder whether this is possible in
practice.

In the last decade, the realization of spin injection from
ferromagnetic metals into semiconductors has triggered many
efforts, motivated by the proposal by Datta and Das for a
spin transistor based on the electric field control of spin–
orbit coupling through the Rashba effect [2, 39]. One major
difficulty came from the problem of the so-called conductivity
mismatch. As shown by [40] in the diffusive limit, when
a semiconductor is in good contact with a ferromagnetic
material, the spin polarization of the current injected into the
semiconductor is strongly reduced because the conductivity
of the semiconductor is much smaller than that of the
ferromagnet. Nevertheless, it was shown that spin injection
can be enhanced by adding tunnelling contacts at the interfaces
between the ferromagnets and the non-magnetic materials
[41, 42]. This turns out to be valid also in the ballistic limit
(see for instance [43]), and in particular for carbon nanotubes,
as illustrated in the next section.

3.4.1. The ballistic spin injection picture. Tunnel barriers
are commonly obtained between ferromagnetic metals and
carbon nanotubes. This makes spin injection possible as we are
going to show here. Estimating accurately the spin injection
parameter P n

l for a ferromagnet/nanotube interface is beyond
the scope of this paper. We will rather adopt here a scattering
approach with a Dirac potential barrier to model the interface.
As shown by [43], this simplified approach is enough to capture
some essential properties of the interfaces.

We assume a Dirac-function potential Uσ
l δ(x −xl) for the

interface l ∈ {L, R} placed at xl , and we use a spin-dependent
wave vector kσ

l for ferromagnetic lead l. Solving the quantum
mechanical problem, one finds for junction l a transmission
probability

T
n,σ
l = 4kFwkσ

l(
kFw + kσ

l

)2
+

(
2Uσ

l me
/
h̄2

)2 . (10)

For completeness, we also give the expression of the wire–wire
reflection phase

ϕ
n,σ
l = arctan

[
2Uσ

l me

h̄2
(
kFw − kσ

l

)]
+ arctan

[
2Uσ

l me

h̄2
(
kFw + kσ

l

)]
at contact l. Figure 8 shows the spin-averaged transmission
probability T n

l = (
T

n,↑
l + T

n,↓
l

)/
2, the spin polarization of the

transmission probability P n
l = (

T
n,↑
l − T

n,↓
l

)/(
T

n,↑
l + T

n,↓
l

)
and the SDIPS parameter 	ϕn

l = ϕ
n,↑
l − ϕ

n,↓
l calculated from

these equations. For the nanotube, we use kFw ∼ 8.5×109 m−1

[8], and for the ferromagnetic contact, we use the typical value
kσ
l ∼ 1.7 × 1010 m−1 [43] and a spin polarization pl = 0.3 for

the electronic density of states in lead l. We define the average
barrier strength Zl = me

(
U

↑
l + U

↓
l

)/
h̄2kFw. We first assume

that Uσ
l is spin independent (full curves). For a metallic

contact, that is Zl = 0, P n
l remains very small. Nevertheless,

the spin injection efficiency is strongly enhanced for a high

Figure 8. Spin-averaged tunnelling rate T n
l (left panel), tunnelling

rate polarization P n
l (middle panel) and SDIPS parameter 	ϕn

l

(right panel) of contact l ∈ {L, R}, estimated by using a Dirac
barrier model with a spin-dependent coefficient Uσ

l , placed between
a ferromagnetic metal with Fermi wave vector kσ

l ∼ 1.7 × 1010 m−1

and a wire with Fermi wave vector kFw = 8.5 × 109 m−1 typical of
single-wall nanotubes. We show the results as a function of the
average barrier strength Zl = me(U

↑
l + U

↓
l )/h̄2kFw, for a polarization

pl = 0.3 of the lead density of states and different values of the spin
asymmetry αl = (U

↓
l − U

↑
l )/(U

↑
l + U

↓
l ) of the barrier.

barrier strength [43]. It is also possible that the potential
barrier between the nanotube and the ferromagnet is itself spin
polarized, i.e. αl = (

U
↓
l − U

↑
l

)/(
U

↑
l + U

↓
l

) �= 0. This can be
due to the magnetic properties of the contact material itself,
when it is evaporated directly on the nanotube, but it can also be
obtained artificially by using a magnetic insulator (see [44])
to form the barrier. This allows us to further enhance spin
injection (dashed lines).

Before concluding this section, we point out that in
the case of coherent quantum transport, P n

l is not the only
parameter which sets the efficiency of spin injection. Indeed,
	ϕn

l is also a crucial parameter since it determines the
localized quantum states inside the wire. Let us consider
for simplicity the non-interacting case of section 3.1. For
the weak values of SDIPS used in figure 4, spin injection
was not improved. However, it was shown that with a
stronger SDIPS, the resonant states in GP[AP] are spin split,
each subpeak corresponding to a given spin direction (see
[18]). Having a strong SDIPS can thus allow us to have a
strongly spin-polarized current. Since the SDIPS-induced
spin splitting is different in the P and AP configurations,
this allows us to further increase the MR. One can see from
figure 8 that the condition required for this effect can be
obtained with weakly transparent and spin-dependent barriers
(see dashed lines for large Zl), which is compatible with
having a large P n

l .

3.4.2. Experimental identification of spin injection. In
sections 3.1 and 3.2, we have considered the gate-tunable
MR effect produced by spin injection into the nanotube, i.e.
P n

L(R) �= 0. We will introduce in section 4.2 other types of
MR effects which are not due to spin injection but to various
properties of the ferromagnetic contacts. To prove that spin
injection is actually taking place in an experiment, one must be
able to discriminate the spin injection MR effect from contact
MR effects.

For this purpose, one key idea is that MR found in
sections 3.1 and 3.2 is mainly a two-terminal effect. If
only one of the contacts k ∈ {L, R} is ferromagnetic, spin
injection will still induce a hysteresis in G as a function of
the external field H, but with only a very small change 	G

when H = ±Hck . This slight change will occur because
the situations in which −→pk is parallel or antiparallel to

−→
H are

not totally equivalent according to equation (2). For instance,
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using the same parameters as in figure 4 but with Pl = 0 and
	ϕl = 0 for one of the two contacts (l = L or l = R) and using
the typical value gµBHckL/h̄vFw = 0.01, one finds a value
|	G|/G < 0.8% much weaker than the maximum MR found
for two ferromagnetic contacts in this figure. The situation
seems to be different for contact MR effects: as we will see
in section 4.2, these effects should already be significant with
a single ferromagnetic contact if they are relevant with two
ferromagnetic contacts. We will describe in section 4.2 other
more specific features which can allow the identification of
contact MR effects.

4. Contacting carbon nanotubes with ferromagnetic
contacts

In this section, we present the state of the art in contacting
carbon nanotubes with ferromagnetic materials. We
emphasize the characteristics of the contacts such as minimum
room temperature two-probe resistance (or transmission) and
the maximum MR amplitude. We also discuss contact effects
which are not related to spin-dependent transport inside the
nanotubes but which could sometimes be superimposed on the
MR effects described in the previous section.

4.1. Contacting carbon nanotubes with ferromagnetic leads

Contacting carbon nanotubes with metallic electrodes has
been an issue since the start of the study of their electronic
properties. Most transport measurements have been carried
out in a two-probe geometry. In the case of non-magnetic
electrodes, the transmission of the contacts determines the
relevant regime for charge transport. As we have seen
above, connecting ferromagnetic contacts to carbon nanotubes
raises additional questions, such as e.g. the efficiency of
spin injection. Therefore, the choice of the ferromagnet is
crucial not only regarding the coupling of the electrodes to the
nanotube but also regarding the reliability of spin injection.

In the case of non-magnetic contacts, a few multi-probe
measurements have been carried out [45, 46] and provide
new insights into quantum transport in nanotubes. Similarly,
one can expect multi-probe measurements to provide useful
information about spin transport when some of the probes are
ferromagnetic [47, 48]. We will however focus on the studies
of the two-probe geometries since they are the most advanced
carried out so far. Table 1 provides a summary of these works.

The main feature to be observed in a carbon nanotube
connected to two ferromagnetic leads is a hysteresis of the
resistance versus an applied magnetic field swept in two
opposite directions, as shown in figure 1, right. One delicate
point is the control of the switching of the magnetization. It
turns out that it is non-trivial to accurately control the domain
pattern of the ferromagnet near the contact with the nanotubes.
Therefore, almost no MR curve looks like the theoretical ones.
The hysteresis curves often show complex structures. As we
will see, this problem has been partially solved with Ni1−xPdx

and La2/3Sr1/3MnO3 (LSMO) contacts.

4.1.1. Co contacts. In the pioneering work by Tsukagoshi
and co-workers, Co contacts were used to study spin-
dependent transport in MWNTs [49]. The two-terminal

resistance of the devices at room temperature ranged from
8 k� to 250 k� [50]. At 4.2 K, the authors observed a MR
which they attributed to spin transport along the relatively short
MWNT length (300 nm). The magnetic field was applied in-
plane. The electrodes were both in Co and had the same
geometry. Given that there was a priori no reason for having
two different coercive fields in the two electrodes, the AP
configuration was difficult to identify. The amplitude of the
hysteresis was at most about +9%. The observed reduced value
was attributed to spin relaxation in the nanotube, yielding a
spin relaxation length of ls = 260 nm. The method was
extended later to SWNT devices [50]. A few experiments
with multi-probes of Co were carried out for SWNTs
[47, 48]. In that case, the two-probe resistance ranged from
about 12 k� to M�s. The two-terminal MR reported ranged
from 2% to 6%. In [48], shape anisotropy was used to
selectively control the switching of the different Co electrodes
(typical width about 100 nm). Experiments with Co electrodes
were also carried out by Zhao and co-workers [51] but a
negative MR of −36% was observed.

It is important to point out that the above experiments have
been realized without a gate voltage supply Vg. In the absence
of any doping, this would imply that the carbon nanotubes
were operated at their charge-neutral point. However, it has
been found that carbon nanotubes are extremely sensitive to
their chemical environment. The chemical potential EFw of a
nanotube can be strongly modified by surface adsorbates such
as water molecules, gas molecules or ions [22, 52, 53]. In
sections 3.1 and 3.2, we have shown that the sign and amplitude
of MR strongly depend on EFw. This implies that the spin
signal will depend on details of the nanotube environment.
One can even expect that MR differs significantly if one
measures the same sample in different cool-downs, as observed
in another experiment described in the next section [54].
Therefore, although the different signs and amplitudes of MR
found in the Co/nanotube experiments are compatible with the
theoretical expectations, a further experimental investigation
of the MR effect requires the use of a gate electrode in
order to study the dependence of MR on Vg, which is much
more significant than the value of MR without a gate voltage
supply.

4.1.2. Fe contacts. Fe is another possible choice for making
ferromagnetic contacts on nanotubes. There is only one study
using Fe on SWNTs carried out by Jensen and co-workers
[54, 55]. In that case, the two-terminal resistances reported
at room temperature vary from 80 k� to 1 M�. In this
study, CVD-grown SWNTs were used. The first contacts were
made on the top of catalyst squares and had a typical size
of 6 µm × 8 µm. The second contact design was two Fe
electrodes with different aspect ratios, typically 10 µm ×
300 nm and 10 µm × 200 nm in order to control the switching
via shape anisotropy. However, both these contact geometries
gave similar magnetization switching for a field applied in-
plane. The samples were coupled to an electrostatic gate. The
sign of MR could be changed from positive to negative with
the gate voltage. The observed MR ranged from −50% up to
100%. Due to the absence of a detailed study of MR versus
Vg, a clear conclusion cannot be drawn from this work.
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Figure 9. Left: SEM micrograph of a typical F–nanotube–F sample of Sahoo et al [29]. NiPd contacts are used to inject and detect spins
electrically in a MWNT with a contact separation of about 400 nm. The external magnetic field is applied in-plane, either perpendicular or
parallel to the axis of the elongated NiPd strips. Right: statistics of the contacting properties for NiPd on MWNTs. The typical two-probe
resistance at room temperature is 20 k�.

Table 1. Summary of the various contacting materials used so far and their contacting properties. Columns 2 and 3 display the minimum
two-probe resistances measured at room temperature for SWNTs and MWNTs contacted with the material indicated in column 1. Column 4
displays the maximum MR amplitude measured at low temperatures. Column 5 reports the MR signs observed. Column 6 indicates whether
gate control of MR was achieved. Column 7 indicates the magnetic signal 	G/G measured for nanotubes contacted with one ferromagnetic
lead and one non-magnetic lead. Column 8 indicates the corresponding references (N = not reported).

SWNT MWNT Max |MR| Gate F–NT–N
Material (k�) (k�) (%) MR sign control 	G/G (%) References

Co 15 8 36 + and − No N [47–51]
Fe 80 N 100 + and − Yes ∼0 [54, 55]
Ni N N 15 + and − Yes N [56]
NiPd 11 5.6 17 + and − Yes <1.4 [29, 57, 58]
(Ga, Mn)As N N 150 + and − Yes <10 [54, 55]
LSMO N 1000 37 + No N [60]

4.1.3. Ni contacts. Ni has also been used to implement
ferromagnetic electrodes on SWNTs [56]. The main finding
with respect to the other works is a continuous sign change as
a function of gate voltage, from +10% to −15%. Although
the channel length was about 10 nm, no size quantization was
observed at 4.2 K.

4.1.4. NiPd contacts. In principle, all kinds of ferromagnetic
alloys could be tried in order to improve the reliability of
the spin injection and/or the switching of the magnetization.
Among these choices, Pd-based alloys look particularly
promising. Indeed, experiments using Ni1−xPdx with x ∼ 0.5
are among the most advanced studies for spin transport in
carbon nanotubes [29, 57, 58]. This choice is based on
the observation that Pd alone makes reliable contacts on
MWNTs as well as SWNTs [59]. Furthermore, Pd is close
to the ferromagnetic instability with a Stoner enhancement
of about 10. A few magnetic impurities are enough to
drive it in the ferromagnetic state (the same holds for Pt
which has a somewhat lower Stoner enhancement of about 4).
Therefore, it seems possible to combine the good contacting
properties of Pd with a finite spin polarization. Furthermore,
the use of Pd as contacting metal prevents oxide layers
from forming at the ferromagnet/nanotube interface. This
might be an advantage with respect to the methods using
pure ferromagnetic metals, because most of the ferromagnetic
oxides are anti-ferromagnetic and therefore not only depolarize

the electronic current, but also modify in general the spin
activity of the interface.

Sahoo and co-workers [58, 29] were the first to study this
contacting scheme on nanotubes. The type of device studied
is presented in figure 9. Two ferromagnetic Pd0.3 Ni0.7 strips
are used to contact either a MWNT or a SWNT. They have
different shapes, typically 14 µm × 0.1 µm and 3 µm ×
0.5 µm for the left and the right electrode, respectively. The
narrower electrode has a sharp switching around 100–250 mT.
The wider one has a less pronounced switching, as shown
in figure 10. This suggests that its magnetization gradually
rotates upon reversing the sign of the external magnetic field.
It is worth noting that Man et al [57] as well as Sahoo et al
have found that the magnetic anisotropy of the NiPd strips
is in-plane, perpendicular to their long axis. This is in
contradiction with the expected shape defined anisotropy and
might be related to the complexity of the domain structure of
the Pd-based ferromagnetic alloys. The two-probe resistance
at room temperature of devices with MWNTs studied by
Sahoo et al [58] is summarized in the right panel of figure 9.
As shown by this figure, the distribution of resistances is
rather peaked at the typical value of 20 k�, which shows the
reliability of this contacting procedure. The minimum value
is 5.6 k�, the best ever reported for ferromagnetic contacts
on MWNTs. For SWNTs, the transparency of the contacts is
lower in general, but transmission probabilities as high as 0.84
have been reported by Man et al [57].

At temperatures below 10 K, a MR is commonly observed
upon sweeping an external magnetic field. Depending on the
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Figure 10. Example of magnetoresistance curves for the SWNT measurements of [29]. Depending on the gate voltage, both signs of MR
are observed. Left: the MR observed is positive (MR = 5.89%), for a gate voltage Vg = 4.302 V. Right: the MR observed for the same
device is negative (MR = −2.81%), for a gate voltage Vg = 4.328 V.

gate voltage, MR is either positive or negative, as shown in
figure 10. The amplitude of the effect is about 5% for MWNTs
and SWNTs in the ‘Fabry–Perot’ regime. It grows to about
10–15% for SWNTs in the Coulomb blockade regime. In
addition, the sign of MR can also be controlled by Vsd in both
types of nanotubes [29, 57].

4.1.5. Other types of contacts. So far, we have
only considered metallic ferromagnetic contacts to carbon
nanotubes. This choice is generally led by the simplicity
of the combination of thin metallic film growth with standard
e-beam lithography techniques. The two main drawbacks of
these methods are the small spin polarizations of the electrodes
and the possible conductivity mismatch between the metal and
the carbon nanotube.

The latter issue may be solved if the ferromagnetic
contacts are ferromagnetic semiconductors. Such a method
has recently been used by Jensen et al who used (Ga,
Mn)As ferromagnetic electrode [54]. In this study, the
Curie temperature of the contacts is about 70 K. Therefore,
the contacts are ferromagnetic at temperatures relevant for
quantum transport in carbon nanotubes, but they cannot be
used for applications at room temperature. The maximum
amplitude of MR observed at 300 mK is however very large,
about 150%, and both signs of MR are observed. In addition,
the sign and the amplitude of MR depend on Vg and Vsd.

Hueso et al [60] have used LSMO to electrically inject
and detect spins in MWNTs. These materials have a bulk spin
polarization of about 100%. A MR of 37% is observed at
5 K, and the spin signal persists up to 100 K. Nevertheless,
this scheme seems to produce samples with a high two-probe
resistance of about 1 M� at 300 K.

4.2. The effect of contacts not related to spin injection

As we have seen in section 3, spin-polarized transport induces
a MR effect for ferromagnetically contacted nanotubes.
However, a spin-valve-like behaviour does not automatically
imply that spin injection is actually taking place in the
nanotube. This just means that the resistance depends
on the relative directions of the magnetizations of the two
ferromagnets. Although this can be enough for spintronic
devices [61], from a fundamental point of view, it is essential
to separate spin injection related phenomena from the others.
In this section, we introduce MR effects not directly related to
the existence of spin-polarized transport inside the nanotube.

4.2.1. Stray field effects. Ferromagnetic electrodes not
only induce a spin-dependent scattering at their interface
but also generate an external stray field which can be under
certain circumstances of the order of a few 100 mT [62].
Therefore, two ferromagnetic microstrips like those shown
in figure 9 can in principle generate a local magnetic field
Hloc which will switch hysteretically as the magnetizations
switch. Since low-dimensional conductors are very often
sensitive to external magnetic fields, it is possible for a MR
to appear just because charges couple naturally to the vector
potential (such a sensitivity is reflected in the conductance of
nanotubes connected to non-magnetic leads). Importantly, if
this mechanism is effective with two ferromagnetic contacts, it
should also be significant if only one contact is ferromagnetic,
in contrast to the spin injection case.

In practice, a MWNT with ferromagnetic contacts has
indeed in general a finite background MR superimposed
on the hysteretic part of the MR. The field dependence of
the non-hysteretic part of the MR can be quantified by a
sensitivity S in % T−1 to the local magnetic field. Figure
11 shows typical examples of hysteretic and background
MR for a MWNT with NiPd contacts, for different applied
gate voltages Vg [29]. The sensitivity S is of the order
of 1 % T−1 or less and can change sign for different Vg.
From this figure, one can calculate the local field change
	Hloc required to obtain the observed hysteretic MR. For
Vg = −3.1 V, one finds 	Hloc = −2.9/0.2 = −14.5 T,
which is negative and way beyond what can be obtained with
microstrips. Furthermore, for Vg = −3.3 V, one would need
a positive 	Hloc, since both MR and S have the same negative
sign. Such a sign change of the local magnetic field produced
by two metallic ferromagnets for different gate voltages can
hardly be explained. Therefore, stray field effects are not
dominant in the MR signal for this type of F–MWNT–F device.
In addition, as one can see in figure 10, S is in general smaller
for SWNTs [29, 56, 57]. One can conclude that stray field
effects do not contribute substantially to MR observed in
nanotubes, at least for the NiPd devices realized so far.

4.2.2. Magneto-Coulomb (MC) effects. The magnetic field
used to control the magnetization of the ferromagnetic contacts
can also induce a magnetoresistance effect, independently
of any spin-polarized transport process. This so-called
magneto-Coulomb (MC) effect [63] simply requires that the
conductance of the nanotube depends on its gate voltage Vg.
The magnetic field shifts the energies of spins ↑(↓) inside
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Figure 11. Left: MR observed by Sahoo et al [29] for a MWNT connected to two NiPd leads, with different values of Vg. Depending on Vg,
both signs of MR and sensitivity S are observed. The amplitude and the sign of S are not correlated with MR. Therefore, the stray fields
from the ferromagnetic electrodes cannot account for MR observed for this device. Right: resistance of a Pd–SWNT–PdNi device as a
function of an external magnetic field for two values of Vg. Almost no hysteresis is observed. The maximum amplitude can be estimated
(almost within the noise) as 	G/G ∼ 1%, more than an order of magnitude smaller than the observed signal with two NiPd electrodes.

contact l by the Zeeman energy ±gµBH/2. Since the densities
of states Nl,σ = Nl(1 + σηlpl) at contacts l ∈ {L, R} are spin
dependent (pl �= 0), this Zeeman shift must be compensated
by a slight change 	µl = −plgµBH/2 in the Fermi energies
of the contacts. This modifies the electrostatic profile of the
circuit, leading to a conductance G̃(Vg) = G(Vg − CL	µL/e

− CR	µR/e). In this framework, a hysteretic conductance
pattern can be obtained while sweeping the magnetic field to
reverse the magnetization of the contacts. The amplitude of
the magnetoresistance signal induced by the MC effect is [64]

MR = − 1

G

dG

dVg

gµB(pLCLHcL + pRCRHcR)

eCg
. (11)

The expression of G to insert in (11) depends on the
different energy scales involved in the problem. For a device
showing conductance peaks, the MC effect should induce a
magnetoresistance effect with a sign oscillating with Vg, since
it is proportional to the derivative of G(Vg). Importantly,
equation (11) shows that the MC-induced magnetoresistance
effect should occur even in the presence of one single
ferromagnetic contact. Finally, from the expression of G̃(Vg),
the MC effect produces a strong background variation in G(H)

on top of the discontinuities at H = HcL(R) (see [64]). These
features could be useful for an experimental identification of
this effect.

4.2.3. Comparison between single and double ferromagnetic
contacts schemes. Both the stray field effect mechanism and
the MC effect should already be significant for devices with a
single ferromagnetic contact if these effects are relevant with
two ferromagnetic contacts. Therefore, it is useful to fabricate
such devices and measure 	G/G. Such experiments have
been carried out by Jensen et al with Fe–NT–Au contacts
and no MR has ever been found [55]. With (Ga, Mn)As
contacts, Jensen et al have reported a finite MR of about
10% for single ferromagnetic contacts, while the maximum
amplitude for double ferromagnetic contacts is about 150%.
Figure 11, right, shows the 	G/G measurement performed
by [29] for a NiPd–SWNT–Pd device, for two different values
of gate voltages, one in the Coulomb valley and the other
close to a resonance. The upper bound for 	G/G is 1.4%
in amplitude which is one order of magnitude lower than the
maximum 	G/G observed with two ferromagnetic contacts,
as can be seen in figure 14. Therefore, all the studies carried

out so far point to the fact that contact effects are generally not
dominant.

5. Electric field control of spin transport

In this section, we present the most advanced experimental
results which have been reported so far about electric field
control of spin-dependent transport in carbon nanotubes. All
these experiments have been realized with NiPd contacts. For
their interpretation, we focus on the Fabry–Perot and quantum
dot regimes, which have been introduced theoretically in
section 3.

5.1. Spectroscopy of carbon nanotubes with
ferromagnetic contacts

The spectroscopy of a carbon nanotube contacted to
ferromagnetic leads can be realized by measuring its
conductance as a function of the gate voltage Vg and the
source–drain voltage Vsd. This step is essential to determine
the different characteristic energies which set the behaviour
of the nanotube and understand the physics leading to the MR
effect. In the Fabry–Perot regime, the spectroscopy reveals the
intrinsic energy spacing 	E = hvFw/2� of the quasi-bound
states of the nanotube, where � is the effective nanotube length
on which transport is actually taking place (see figure 12,
left panel). This length is generally defined by the inner
spacing between the two metallic electrodes for SWNTs (see
for instance [10]) but can also be related to the full tube length
for MWNTs [65]. In the case of a quantum dot behaviour, the
spectroscopy also reveals the charging energy U = e2/C� of
the nanotube device (see figure 14, left panel). In the latter
case, other energy scales can be revealed in the fine structure
of spectroscopy in metallic SWNTs [10], but we will omit
them since they have not been identified in the F–SWNT–F
experiments so far.

5.2. Gate modulations of the magnetoresistance

We have shown in section 3 that the MR of a quantum wire with
ferromagnetic contacts can strongly depend on the gate voltage
Vg, in the Fabry–Perot regime as well as in the quantum dot
regime. We show below how these phenomena can be revealed
in ferromagnetically contacted MWNTs and SWNTs.
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Figure 12. Experimental results obtained by [57] with a SWNT connected to two PdNi contacts. The left panel shows a colour (grey) scale
plot of the nonlinear conductance GP of the nanotube as a function of the source–drain voltage Vsd and the gate voltage Vg. The spacing
between the resonant lines of conductance indicates an intrinsic energy spacing of the levels by 	E ≈ 7 meV. The right panel shows a
comparison between the GP(Vg) and MR(Vg) data measured at T = 4.2 K (symbols) and the non-interacting scattering theory of
section 3.1.2, assuming two uncoupled channels with TL = 0.84, TR = 0.26, PL(R) = 0.1 and no SDIPS.

5.2.1. SWNTs in the Fabry–Perot regime. Man et al
[57] have measured MR for SWNTs with transparent NiPd
contacts. In agreement with previous studies with non-
ferromagnetic contacts, the characteristic pattern of an
electronic interferometer is observed, as shown in figure 12,
left panel. The pattern reveals an intrinsic level spacing
	E ∼ 7 meV, which corresponds to zero-dimensional
states delocalized over 300 nm, in agreement with the
lithographically defined SWNT length. Figure 12, right panel,
displays simultaneous measurements of the MR and the linear
conductance GP. The MR oscillates from 0% to 4% on the
same gate scale as the linear conductance, e.g. 	Vg ≈ 0.5 V.
Therefore, as anticipated from section 3.1, the MR can be gate
controlled in SWNTs through quantum interferences.

In order to rule out possible contact effects, one can
compare the experimental MR measured by [57] with the MR
expected from the magneto-Coulomb effect. In principle, the
so-called magneto-Coulomb (MC) effect can occur even in a
non-interacting resonant wire since the conductance of the wire
depends on its gate voltage Vg. The amplitude expected for
the MC-induced magnetoresistance, using equation (11) with
Cg/C� = 0.014, G(dG/dVg)

−1 = 0.125 V, HcL(R) < 300 mT,
pL(R) = 0.1, is |MR| < 0.2%. This value is much weaker than
the measured MR. Also, the experimental MR(Vg) signal is
clearly not proportional to the logarithmic derivative of G(Vg),
in contrast to MR expected from equation (11). It is thus not
possible to attribute the MR(Vg) observed to the magneto-
Coulomb effect introduced in section 4.2.2.

Resonant effects account much better for the observed
MR. Indeed, Man et al [57] have interpreted their data with the
model presented in section 3.1 (equations (1) and (2)). They
have assumed two uncoupled identical channels in order to
take into account the two-fold degeneracy commonly observed
in SWNTs, with TL = 0.84, TR = 0.26, PL = PR = 0.1
and no SDIPS. In view of the strong value of TL + TR and
of the low values of PL(R), the effects of the SDIPS on the
MR(Vg) curves are indeed probably too weak to be resolved
in the actual experiment. Nevertheless, it is interesting to note
that the MR(Vg) pattern of figure 12, right panel, shows a
slightly asymmetric behaviour for Vg < 7.7 V, similar to the
curve shown in the bottom-right panel of figure 4, plotted for
TL = 0.84, TR = 0.26, PL = PR = 0.1 and a finite SDIPS

(a)

(b) (c)

Figure 13. Experimental results obtained by [29] with a MWNT
connected to two PdNi contacts. (a) The MR data measured at
T = 1.85 K. The MR oscillates with a period 	V TMR

g ∼ 0.4–0.75 V.
(b) A colour (grey) scale plot of the nonlinear conductance GP of
the nanotube as a function of the source–drain voltage Vsd and the
gate voltage Vg, for T = 300 mK. This plot allows the resolution of
the single-electron states, which correspond to a gate voltage scale
	V e

g ∼ 25 mV, and indicate Coulomb blockade effects. (c) The
conductance GP of the device measured at T = 300 mK on a Vg

range much larger than that in (b). The conductance peaks show
beatings with a period 	V beat

g ∼ 0.4 V comparable to 	V TMR
g .

value 	ϕL(R) = −0.035. The irregularities present in the
variations of the MR(Vg) data for Vg > 7.7 V prevent a reliable
conclusion on the presence of SDIPS in these data (the authors
suggest that these irregularities are due to the misorientation
of the magnetizations in the electrodes).

5.2.2. MWNTs. Sahoo et al [29] have studied the gate
dependence of the MR for MWNTs with NiPd electrodes, at
T = 1.85 K. As shown in figure 13(a), the MR is observed to
oscillate relatively regularly between −5% and +6% on a gate
voltage scale 	V TMR

g such that 0.4V < 	V TMR
g < 0.75V .
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The conductance of the same sample has been studied
at lower temperatures (T = 300 mK), in order to resolve
the single-electron states which could not be resolved at the
temperature at which the MR was measured. A measurement
of the differential conductance dI/dV as a function of source–
drain Vsd and gate voltage Vg at T = 300 mK is shown in
figure 13(b) for a relatively narrow Vg range. It displays
the diamond-like pattern characteristic of single-electron
tunnelling in a quantum dot. The diamonds vary in size
with single-electron addition energies ranging between 0.5 and
0.75 meV, in agreement with previous reports on MWNT
quantum dots with non-ferromagnetic leads [65]. The MR
gate voltage scale 	V TMR

g measured at T = 1.85 K is much
larger than the scale 	V e

g ∼ 25 mV for the addition of single
electrons: it corresponds to the addition of at least 16 electrons
rather than 1.

In order to understand this discrepancy, one can consider
the linear conductance observed over a wider gate voltage
range, as shown in figure 13(c). The single-electron
conductance peaks are strongly modulated in amplitude,
leading to a regular beating pattern with a gate voltage scale
	V beat

g ∼ 0.4 V. This scale corresponds to the scale 	V TMR
g

of the MR oscillations, probably because, due to thermal
averaging at T = 1.85 K, the conductance is determined
by the envelope of these beatings, which affects in turn the
magnetoresistance.

Interestingly, such beatings can be found within
the multichannel non-interacting picture introduced in
section 3.1.3. In this model, at temperatures such that the
single-particle resonances are averaged out, the MR is only
sensitive to the average over these resonances, yielding a MR
modulation that follows the envelope function of the single-
electron peaks (see figure 5).

5.2.3. SWNTs in the Coulomb blockade regime. Sahoo et al
[29] have also studied the MR for SWNTs with NiPd contacts.
Figure 14, left panel, displays a colour (grey scale) plot of

Figure 14. Experimental results obtained by [29] with a SWNT connected to two PdNi contacts. Left panel: colour (grey) scale plot of the
nonlinear conductance GP of the nanotube as a function of the source–drain voltage Vsd and the gate voltage Vg. This plot indicates an
intrinsic energy spacing of the levels by 	E = 2.5 meV and a charging energy U = 5 meV. Right panel: conductance GP and
magnetoresistance MR measured simultaneously at T = 1.85 K (black squares). As shown by [16], these curves can be interpreted in an
interactive picture by using the EOM approach presented in section 3.2 for a quantum dot with two degenerate energy levels. The theoretical
curves are shown for parameters consistent with the experiment, i.e. U = 5 meV, U/kBT = 30, α = 0.0986 and PL(R) = 0.4. Assuming
identical tunnel couplings for the two orbitals, the values of tunnel rates �L = 0.0043U and �R = 0.0725U are imposed by the width and
height of the conductance peaks. Then, h

P[AP]
SDIPS are the only truly free fitting parameters remaining for interpreting the MR curve. The theory

(coloured (full) lines) is plotted here for gµBhP
SDIPS = 0.05U and hAP

SDIPS = 0.

the nonlinear conductance dI/dV as a function of Vg and Vsd

at 1.85 K for a SWNT device with NiPd electrodes. The
characteristic quantum dot behaviour is observed. One has
Ec ∼ 5 meV and 	E ∼ 2.5 meV. The latter value corresponds
to zero-dimensional states delocalized on � = 600 nm, in
agreement with the lithographically defined SWNT length. In
figure 14, right panel, the variations of the linear conductance
G and MR are simultaneously shown for two resonances.
The MR changes sign on each conductance resonance. The
amplitude of the MR ranges from −7% to +17%, which is a
higher amplitude than for the MWNT samples and SWNTs in
the strongly coupled regime. Electron–electron interactions
seem to enhance the amplitude of MR modulations, thereby
improving the spin-FET behaviour.

In this paragraph, we compare the experimental MR
reported in [29] with the MR expected from the magneto-
Coulomb effect. One can evaluate the amplitude of
the magnetoresistance induced by the MC effect in this
experiment, using equation (11). With C�/Cg = 10,
G(dG/dVg)

−1 = 12.5 mV, HcL(R) < 100 mT, pL(R) = 0.4,
one obtains an amplitude |MR| < 0.4%, which is too weak
to account for the data of figure 14. Also, the shape of the
MR(Vg) shown in this figure is clearly not proportional to the
logarithmic derivative of G(Vg), contrarily to what is expected
for the MC-induced magnetoresistance. Finally, circuits with
a single ferromagnetic contact were also realized in order to
check the origin of the MR effect observed. With a single
ferromagnetic contact, the MR effect obtained (see figure 11)
is much weaker, which rules out not only the MC effect
but also stray field effects produced by the ferromagnetic
leads. Therefore, one can consider the MR observed with
two ferromagnetic contacts as an effect of spin injection in a
resonant system.

In [29], Sahoo et al have used the scattering approach
introduced in section 3.1 in order to interpret their data.
The line shape of the MR dips is asymmetric, similar to the
calculated line shape for the non-interacting regime displayed
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in figure 4, left panel. This suggests that a finite SDIPS can be
observed in this circuit. Nevertheless, an interacting approach
which takes into account the Coulomb blockade is required
in order to confirm this point. We discuss below a fully
interacting approach which allows a quantitative fit of the data,
as shown in figure 14, right panel.

Reference [16] has provided an interactive interpretation
of the data, using the EOM approach presented in section 3.2.
The regularity of the MR(Vg) oscillations displayed by the
data being incompatible with a one-orbital model, a two-
degenerate-orbital model, which takes into account the K–K ′

degeneracy of the orbital levels of the nanotube, has to be
used. The two-orbital model exhibits good agreement with the
experimental data for hP

SDIPS = 0.05U , hAP
SDIPS = 0, �L/U =

0.0043, �R/U = 0.0725, |PL(R)| = 0.4, U = 5 meV,
U/kBT = 30 and α = 0.0986. Note that the two-orbital
model could not provide a reasonable fit to the data for
h

P[AP]
SDIPS = 0.

The value of hP
SDIPS for the best fit corresponds to a

magnetic field of about 2 T, which is too strong to be
attributed to stray fields from the ferromagnetic electrodes
(see section 4.2.1). For comparison, one can estimate hP

SDIPS
in the non-interacting theory [18], using realistic parameters,
i.e. leads with a Fermi energy 10 eV and a density of
states polarized by 40%, and a nanotube with Fermi wave
vector 8.5 × 109 m−1, Fermi velocity [8] vFw = 8 × 105

m s−1, length � = 500 nm as in [29], and density of states
NFw = 2�/πh̄vFw. The interfaces between the nanotube
and the leads are furthermore modelled with Dirac potential
barriers, with a height which is spin polarized by 40% and
an average value which corresponds to (see section 3.2)
�L(R) = TL(R)

/
2πN

L(R)
F ∼ 60 µeV (for comparison the fitting

parameters used in figure 14 correspond to �L = 21 µeV
and �R = 362 µeV). This gives hP

SDIPS ∼ 1.3 T, which is
consistent with the above value used for the fit.

Note that the fitting curves shown in figure 14 have been
optimized in order to interpret the data for Vg > 4.331 V.
Like many Coulomb blockade devices, the nanotube circuit
studied in this experiment suffered from low-frequency Vg

noise, which can be attributed to charge fluctuators located in
the vicinity of the device. At Vg = 4.331 V, a gate voltage
jump occurred. Therefore, one cannot be sure that the data for
Vg > 4.331 V and Vg < 4.331 V correspond to the filling of
consecutive levels. Nevertheless, there is a certain probability
that this is the case since these gate voltage jumps often have
an amplitude which does not exceed e/Cg. In this case, the
discrepancy between the theory and the data could be due to
the presence of other levels which should modify the theory for
peak 1. In future experiments, it would be interesting to obtain
continuous data on a larger Vg range, in order to check that the
shape of the MR(Vg) pattern depends on the occupation of the
dot (a different shape is expected for peak 4 in the theory of
[16]).

5.3. Effect of source–drain bias on the magnetoresistance

The effect of source–drain bias Vsd on the MR can also
be investigated in order to obtain a further understanding
of the system. The MR at finite bias can be defined as
(dV/dIAP − dV/dIP)/(dV/dIP).

Figure 15. Effect of a finite source–drain voltage Vsd on the
magnetoresistance of a carbon nanotube. The left panel corresponds
to a MWNT study by Sahoo [66]. The MR is displayed below the
corresponding conductances in the AP (red full line) and the P
orientations (blue full line), for a finite gate voltage of 3.85 V. The
right panel corresponds to the SWNT study of Man et al [57].
The MR corresponds here to a gate-voltage-averaged MR and σ is
the corresponding standard deviation. In both cases, the MR signal
vanishes when the source–drain voltage increases.

Figure 15 displays two examples of MR as a function of
Vsd. The left panel shows a measurement by Sahoo [66] of
a MWNT with NiPd contacts separated by 1 µm (this is a
different MWNT sample than that discussed in section 5.2.2).
The MR, which is about 3% at zero bias, gradually decreases
at finite bias and vanishes for Vsd > 3 mV. It displays a
sign change, symmetrically for |Vsd| = 1 mV. This energy
scale corresponds to the zero-bias anomaly (ZBA) observed
in the conductance data shown above MR. This ZBA has
been reported in MWNTs and SWNTs. In the latter case,
it has been attributed to the Luttinger liquid behaviour [36].
In MWNTs, the ZBA has been attributed to the interplay of
electron–electron interactions and disorder [68]. Figure 15,
right panel, shows the gate-voltage-averaged MR of a SWNT
measured by Man et al [57] (this is the sample introduced in
section 5.2.1). A similar trend as for MWNTs is observed.

Within the non-interacting picture, MR should display a
similar dependence versus finite bias as versus gate voltage.
However, the general features found experimentally contradict
this simple assumption. The discrepancy between the non-
interacting model and the data of figure 15 might therefore
be due to interactions. In the interacting case, the Coulomb
blockade can induce a non-trivial dependence of MR versus
Vsd [23]. For instance, dynamical spin blockade is expected to
strongly affect spin transport at finite bias in quantum dots in
the sequential tunnelling regime [28]. Non-trivial variations
of MR(Vsd) are also expected in the co-tunnelling regime [24].
Furthermore, oscillations of the MR signal are predicted in the
Luttinger liquid limit [17]. However, the fact that MR does not
seem to saturate to its classical value (i.e. that for two-tunnel
junctions in series) but rather vanishes at high bias points to
possible spin relaxation processes in the nanotube or to a bias
dependence of the spin polarization in the electrodes [57].

5.4. Spin relaxation time

We have reported above on various experiments which indicate
that a carbon nanotube can convey a spin-polarized current.
The success of these experiments relies on the fact that
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electrons have a sufficiently long spin relaxation time τs inside
the nanotube. Nevertheless, for realizing further control of the
spin dynamics in nanotubes, a detailed study of spin relaxation
processes would be useful.

On the theoretical side, a few predictions for the value
of τs in carbon nanotubes are available [72]. In thin films
made out of usual metals such as Cu, one finds τs ∼ 10 ps
at low temperatures [70] due to mechanisms involving spin–
orbit coupling and momentum scattering [39]. In principle,
one can expect a much larger τs in nanotubes, due to the very
weak spin–orbit interaction expected [21, 73] and the possible
ballistic transport in these systems. Electronic confinement
should further suppress conventional spin relaxation processes,
as shown by [71] for GaAs quantum dots. One can thus expect
that the dominant intrinsic relaxation mechanism arises from
hyperfine coupling to the nuclear spins [39]. Nevertheless,
the latter mechanism may not be so critical since 12C does not
have a nuclear spin and 13C, which has a nuclear spin I = 1/2,
has a low natural abundance of 1.1%. Very recently, Semenov
et al estimated τs ∼ 1 s due to the hyperfine interaction, for
semiconducting SWNTs at T = 4 K [72].

On the experimental side, two different types of methods
can be used to measure τs in nanotubes: spin injection methods
and spectral methods. Regarding spin injection, spin must
be conserved for at least the dwell time of the electron on
the nanotube in order to produce a finite spin signal in the
conductance of the whole device. This allows us to estimate a
lower bound for τs from the experiments reported in this paper.
From the measurements on SWNTs with NiPd contact in the
weakly coupled regime [29], one finds τs > 2h̄/(�L + �R) ∼
3 ps at T = 1.85 K. Regarding spectral methods, conduction
electron spin resonance (CESR) has been used to investigate
the spin relaxation processes in macroscopic amounts of
carbon nanotubes [74, 75]. So far, no consensus has emerged
from these measurements, especially concerning chemically
undoped SWNTs. However, in all these experiments, it is
found that magnetic impurities (probably catalytic particles)
dominate the signal in general for unpurified nanotubes. For
vacuum-annealed SWNTs, Petit et al could restore a finite
CESR signal and determine a relatively long τs of 3–5 ns at
T = 300 K. Nevertheless, this result has not been reproduced
in later experiments [75]. Further research on spin relaxation
mechanisms in nanotubes is highly desirable.

6. Conclusion and perspectives

In this paper, we have shown that carbon nanotubes are
promising candidates for the realization of efficient spin
transistors. Ferromagnetic contacts can be used to inject
a spin-polarized current inside a nanotube, allowing the
observation of spin-valve behaviour. Gate tunability of the
nanotube magnetoresistance has been observed, in agreement
with theoretical predictions made for resonant tunnelling
systems and quantum dots.

From a technical point of view, the presently
most advanced experiments regarding gate control of the
magnetoresistance are not those which show the most efficient
spin injection. An optimization of the contact properties has
still to be done in this kind of experiment, in order to obtain
accurate gate control of the giant magnetoresistance effect.

Experiments with highly polarized ferromagnetic materials
should be further developed in order to increase the efficiency
of spin injection and thus the amplitude of the MR effect.
Another possibility to investigate is using ferromagnetic
insulators as tunnel barriers. The shape of the ferromagnetic
contacts should also be optimized in order to get better control
of the switching behaviour of the magnetic polarizations.
Another problem is the low temperatures required in order
to obtain discrete levels on the nanotubes. In order to increase
the operating temperature of the carbon-nanotube-based spin-
FET, one could reduce the spacing between the ferromagnetic
electrodes down to a few 10 nm, as suggested very recently
[76].

From a fundamental point of view, a more extensive
study of the dependence of the nanotube magnetoresistance
on the gate voltage, source–drain voltage and temperature
would allow the understanding of the physics involved to
be refined. For instance, it would be interesting to investigate
the effects of the gate voltage on the contacts’ scattering
properties. It would also be interesting to study how the
spin dependence of interfacial phase shifts varies with the
polarization of the contacts. Nanotube spin valves could also
be used in non-collinear configurations in order to study spin-
precession effects. Eventually, the relevant spin relaxation
mechanisms should be identified.

The studies introduced in this paper open a path to the
control and the manipulation of spin in nanotubes. Besides
spintronics applications, we believe that devices such as those
depicted here could also prove to be useful for quantum
computing applications.
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