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Variational study of a two-level system coupled to a harmonic oscillator
in an ultrastrong-coupling regime
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The nonclassical behavior of a two-level system coupled to a harmonic oscillator is investigated in the
ultrastrong coupling regime. We revisit the variational solution of the ground state and find that the existing
solutions do not account accurately for nonclassical effects such as squeezing. We suggest a trial wave function
and demonstrate that it has an excellent accuracy for the quantum correlation effects as well as for the energy.
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Introduction. A two-level system interacting with a har-
monic oscillator appears in various fields in physics, ranging
from an atom coupled to a photon inside of an optical cavity [1]
to a Cooper-pair box coupled to a nanomechanical oscillator
[2]. A theoretical model that describes the system is expressed
by the Hamiltonian

H = ω0a
†a + 1

2�σz − λ(a + a†)σx + λ2, (1)

where ω0 is the energy of the oscillator, � is the spin level
splitting, and λ is the coupling strength. The Pauli matrices
characterize the two-level system, while a and a† denote the
boson operators.

The Hamiltonian (1) reveals completely different physics
at different scales of ω0, �, and λ. For example, a cavity
quantum electrodynamics (QED) operates in a regime where
λ,|ω0 − �| � ω0,�, under which the counter-rotating terms
of the Hamiltonian (1), a†σ+ and aσ−, can be neglected.
Within this rotating wave approximation, the model reduces
to a Jaynes-Cummings model and is solvable exactly [3]. The
ground state is a simple direct product of the ground states of
the oscillator and the spin. In contrast, in the so-called ultra-
strong coupling regime (� � ω0 and λ ∼ √

�ω0), interesting
quantum effects arise in the ground state; the two-level system
and the oscillator are entangled. The degree of entanglement
increases monotonically as a function of the dimensionless
coupling constant g ≡ 2λ/

√
�ω0. It also shows a squeezing

effect [4]; that is, the variance of momentum quadrature in the
ground state becomes smaller than the uncertainty minimum
[5–7]. Hereafter, we set ω0 = 1 for simplicity.

The aforementioned ultrastrong regime has recently at-
tracted much attention because of the possibility of realizing it
experimentally in a circuit QED system [7–10]. Furthermore,
as rather a theoretical problem, the ultrastrong coupling
regime when � becomes ∞ has also been studied extensively
because it shows a phase-transition-like behavior in the
entanglement between the oscillator and the qubit in the ground
state [11–16].

In this paper, we develop a variational ground state. The
variational method had already been used for the Hamiltonian
(1). A displaced coherent state for g � 1, a displaced squeezed
state for g � 1 [17], and a superposition of two coherent states
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for g � 1 [18,19] have been suggested as variational ground
states, respectively. The accuracy of the suggested variational
states was reasonable for the ground-state energy [17–19].
However, we find that the variational states suggested in
previous work [18,19] underestimate the squeezing effect sig-
nificantly in the intermediate regime (g � 1); see Figs. 2(b) and
2(e). The failure becomes more pronounced as � increases.

This observation implies that an energy-optimized vari-
ational wave function does not necessarily capture all the
quantum correlation effects in the true ground state of the
system. In this paper, we suggest a new variational ground
state which captures the squeezing effect accurately.

First, we derive an equivalent model with only a boson
degrees of freedom, followed by a derivation of an effective
classical Hamiltonian by utilizing a parity symmetry in the
model [20]. We observe that this effective classical Hamilto-
nian shows bifurcation around g = 1, which is consistent with
the observation in Refs. [12] and [14] based on a classical
model of Eq. (1) and gives a qualitative account of the
properties of the ground state. We then suggest a superposition
of two displaced-squeezed states as a trial wave function and
demonstrate that it can predict the squeezing effect accurately.
This shows that a deformation of each superposed wave packet
is crucial to the squeezing effect of the ground state. We also
discuss the drastic change in the degree of entanglement as g

varies across g = 1 when � → ∞.
Effective Hamiltonian. The model (1) has a useful sym-

metry. If |n′,σ ′〉 = H |n,σ 〉, then n′ + σ ′ (mod 2) = n + σ

(mod 2), where |n,σ 〉 ≡ |n〉 ⊗ |σ 〉, |n〉 (n = 0,1,2, . . .) is the
boson number state, a†a|n〉 = n|n〉, and |σ 〉 (σ = ±1) is the
spin state, σz|σ 〉 = σ |σ 〉. We further stress this symmetry by
introducing a generalized “parity” operator:

� = exp(−iπa†a)σz. (2)

Clearly, the Hamiltonian (1) is invariant under transfor-
mation described by �, [H,�] = 0. The operator � has
two eigenvalues ±1, and corresponding eigenstates are
given by ∣∣ϕσ

n

〉 ≡ (a†)nσ n
x√

n!
|0,σ 〉 (σ = ±1). (3)

Namely, �|ϕ±
n 〉 = ±|ϕ±

n 〉. The Hilbert space can be decom-
posed into a direct sum E = E+ ⊕ E− of two subspaces E±
spanned by |ϕ±

n 〉, respectively. Accordingly, the Hamiltonian
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can also be written as H = H+ ⊕ H−, where H± belongs to
the subspace E±, and the partition function Z ≡ Tr[e−βH ] as
Z = Z+ + Z−, where Z± ≡ Tr[e−βH± ].

Now we make the key observation, suggested in the expres-
sion for the parity eigenstates in Eq. (3), that the combination
a†σx behaves like a boson operator within each subspace
E±. To show this rigorously, we first take a drone-fermion
representation [21] of spin σz = 2f †f − 1 and σ+ = σ

†
− =

f †(d + d†), where f and d are fermion operators. We then
define a new boson operator b† = a†(f † − f )(d + d†), which
satisfies [b,b†] = 1. The parity basis states are then written as

∣∣ϕσ
n

〉 = (b†)n√
n!

|0,σ 〉, (4)

where |0,σ 〉 serves as the “vacuum” of the new boson operator
b within Eσ . It is now clear that the sub-block Hamiltonians
H± can be rewritten solely in terms of the boson operator b as

H± = (b† − λ)(b − λ) ± 1
2� cos(πb†b). (5)

The same expression was also derived in Ref. [20] using
a canonical transformation. Having only a boson field,
expression (5) allows us to compare the model directly with
the corresponding classical system by deriving the classical
effective potential.

To get a classical effective potential, we express the partition
functions Z± in terms of a functional integration [22]. Z± =∫
D[φ∗(τ ),φ(τ )] exp(−S±), with the action defined by

S± =
∫ β

0
dτ

[
φ∗∂τφ + (φ∗ − λ)(φ − λ) ± 1

2�e−2φ∗φ]
, (6)

where β is the inverse temperature and ∂τ denotes the
partial derivative with respect to the imaginary time τ .
Making a change in variables, p = (φ∗ + φ)/

√
2 and p =

i(φ∗ − φ)/
√

2, we can rewrite the functional integrals as
Z± = ∫

D[x(τ ),p(τ )] exp(−S±), with

S± =
∫ β

0
dτ [−ip∂τ x + H±

cl (x,p)]. (7)

Here H±
cl (x,p) is the effective classical Hamiltonian defined

by

H±
cl (x,p) = 1

2 [(x −
√

2λ)2 + p2] ± 1
2�e−(x2+p2). (8)

The potential profile is depicted in Fig. 1 for both � = 10
and � = 105. For g � 1, the classical potential has one
local minimum and is highly anharmonic, illustrating why
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FIG. 1. (Color online) Profile of H−
cl (x,0): (a) for � = 10 and

(b) for � = 105. Different curves correspond to g = 0.1,1,2,3 (from
bottom to top). The inset in (b) zooms in on the region around x = 0.

a squeezed state localized around x = 0 is a good variational
solution in this regime. As g approaches the critical value, 1, it
shows a bifurcation of its local minimum as in the correspond-
ing classical system. As g increases further, its local minimum
around the origin disappears and a single local minimum
develops at x ∼ g

√
�/2. This is also consistent with the fact

that the coherent state is a good approximation in this regime.
Variational solutions. We have seen from the effective

classical potential that the model in Eq. (1) shows highly
nontrivial behaviors in the regime g ∼ 1. Now we investigate
this regime more closely in terms of variational wave functions.
To test the accuracy of a given trial wave function, we
examine not only the energy but also the quantum correlation
effects such as squeezing and spin-oscillator entanglement. We
characterize the squeezing effect with the momentum variance
�P and the spin-oscillator entanglement with tangle [23]
defined by τ = 2[1 − Tr(ρ2

s )], where ρs is a reduced density
matrix of the two-level system. We test the variational solution
for two cases, � = 10 and � = 105, by comparing it with the
exact solution. The exact solution is numerically calculated
by the exact diagonalization method [24], where a sufficient
number of Fock basis states |n〉 (typically 300 states for
� = 10 and 3000 states for � = 105) is kept until the desired
accuracy is achieved.

In Refs. [17] and [19], a superposition of two displaced
coherent states was suggested as a trial wave function:

|ψ(α1,α2,t)〉 = (1 − t)|α1〉 + t |α2〉, (9)

where |α〉 = D(α)|0〉, with D(α) = exp[α(b† − b)]. Hereafter
we refer to the trial wave function in Eq. (9) as the double
coherent state (DCS). It shows a reasonable accuracy for
the energy (with an error of about 1%) in the intermediate
regime [see Figs. 2(a) and 2(e)]. Although neither our effective
classical potential nor a bifurcation of fixed point in the
corresponding classical system can give a quantitative account
of the ground state, the fact that a superposition of two
wave packets is a good approximation for the ground state
is consistent with the classical observations of bifurcation.

However, as shown in Figs. 2(b) and 2(f), the degree of
entanglement between the spin and the oscillator exhibits
relatively larger deviations, especially for large �.

The poor accuracy of the variational solution in Eq. (9) is
even more noticeable (more than 30%) on the momentum
variance �P of the ground state. For both � = 10 and
� = 105, the squeezing effect is considerably underestimated
in this scheme. Moreover, for the true adiabatic regime, the
variational solution predicts that the squeezing effect suddenly
disappears when g becomes larger than 1.

We can understand the reason for the failure by looking
at the optimized variational parameters shown in Fig. 3(e).
If g � 1, the variational states are optimized at α1 = −α2 ∼
g
√

�/2. In this case, there is a considerable overlap between
two coherent states which results in the squeezing effect. On
the contrary, when g becomes larger than 1, the variational
parameter abruptly changes, and the value for α1 and α2

becomes an order of 10 or 100, still having opposite signs
from each other. Then the overlap between two coherent states
vanishes and cannot give the squeezing effect. This observation
leads us to conclude that a deformation of individual wave
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FIG. 2. (Color online) Comparison of variational solutions with
the exact solution. The open (blue) square represents the DCS wave
function, while the filled (red) circle indicates the DSS wave function.
(a, e) Error in the energy with respect to the exact energy. (b, f) Error in
the tangle. (c, g) Error in the momentum variance. (d, h) Momentum
variance of the ground state; the solid (black) line indicates the exact
solution.

packets is considerable in the true ground state, and unless
the effect is taken into account in the trial wave function, the
squeezing effect is inevitably underestimated.

Motivated by the preceding observation, we propose a
superposition of two displaced-squeezed states as a trial wave
function,

|ψ(r1,α1,r2,α2,t)〉 = (1 − t)|r1,α1〉 + t |r2,α2〉, (10)

where |r,α〉 denotes the displaced-squeezed state [25] defined
by |r,α〉 = S(r)|α〉 with S(r) = exp[(rb†b† − r∗bb)/2]. We
refer to the wave function in Eq. (10) as the double squeezed
state (DSS). Without a loss of generality, the displacement
parameter α and the squeezing parameter r are assumed to be
real.

The variational parameters r1, α1, r2, α2, and t are
determined by minimizing the energy E(r1,α1,r2,α2,t) =
〈ψ |H−|ψ〉/〈ψ |ψ〉. It includes two direct terms,

〈rj ,αj |H−|rj ,αj 〉 = sinh2 rj + (λ − αje
rj )2 − �

2
e−2α2

j ,

(11)
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FIG. 3. (Color online) Optimized variational parameters for the
double squeezed state [Eq. (9)] for � = 10 (a–c) and for � = 105

(d–f). The variational parameters for the double coherent state
[Eq. (10)] are qualitatively similar (not shown) except for r1 = r2 = 0.
(a, d) Relative weight t in the superposition. (b, e) Displacement
parameters α1 and α2. (c, f) Squeezing parameters r1 and r2.

for j = 1,2, and a cross term,
〈r1,α1|H1|r2,α2〉

〈r1,α1|r2,α2〉
= sech(r1 − r2) sinh r1 sinh r2

+ [λ − sech(r1 − r2)(α1 cosh r2 + α2 sinh r1)]

× [λ − sech(r1 − r2)(α1 sinh r2 + α2 cosh r1)]

− 1

2
� exp[−2sech(r1 − r2)α1α2], (12)

where

〈r1,α1|r2,α2〉
= exp[α1α2sech(r1 − r2)]√

cosh(r1 − r2)

× exp

[
−

(
α2

1 + α2
2

) + (
α2

1 − α2
2

)
tanh(r1 − r2)

2

]
. (13)

The optimum variational parameters r1, r2, α1, α2, and t thus
determined are plotted as a function of g in Fig. 3. The
squeezing parameters r1 and r2 of the individual wave packets
in the DSS are indeed large in the regime g � 1, where the
DCS variational solution changes abruptly. This is consistent
with our prediction.

Using this variational solution, we calculate the mo-
mentum variance. The variance �P of the momentum
P = i(b† − b) is given by �P = 〈ψ |P 2|ψ〉/〈ψ |ψ〉, as in
our case 〈ψ |P |ψ〉= 0. The direct terms and cross term are,
respectively, given by 〈rj ,αj |P 2|rj ,αj 〉 = e−2rj (j = 1,2) and

〈r1,α1|P 2|r2,α2〉
〈r1,α1|r2,α2〉 = 2

e2r1 + e2r2
− 4(α1e

r1 − α2e
r2 )2

(e2r1 + e2r2 )2
. (14)
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Thus the calculated momentum variation is shown in Figs. 2(d)
and 2(h). The squeezing effect is accurately captured by
the DSS (10), and the accuracy can be attributed to the
deformation of the constituent wave packets. Our variational
solution illustrates well the phase-transition-like behavior for
the � → ∞ regime.

Interestingly, the optimal variational parameters satisfy
α1 ≈ −α2 and r1 ≈ r2 for � � 1 [this is not the case for
� ∼ 1; compare Figs. 3(b) and 3(c) with Figs. 3(e) and 3(f)].
In this case, the DSS in Eq. (10), which has been expressed
in terms of the spin-oscillator hybrid mode b, takes a simple
form (not normalized),

|ψ(r,α,r,−α,t)〉 = (|r,α〉 + |r,−α〉) ⊗ |↓〉
+ (1 − 2t)(|r,α〉 − |r,−α〉) ⊗ |↑〉, (15)

in terms of the original spin and oscillator mode. This form
shows transparently the entanglement feature in the optimal
wave function: For g � 1, t ≈ 1/2 and the spin and oscillator
is separable. As g increases, t decreases, which leads to

strong entanglement between spin and oscillator mode as
shown in the insets in Figs. 2(b) and 2(f), and the overlap
between |α〉 and |−α〉 (α ∼ λ) gives a finite amount of
squeezing.

Discussion. We have studied the spin-boson model (1) in
the ultrastrong coupling limit by means of an effective classical
potential and an improved variational wave function. We note
that in the true adiabatic regime (� � 1), the critical strength
g for the entanglement coincides with the point where the
squeezing effect is maximum. This coincidence can also be
noticed from the crossover behavior of the effective classical
potential (9). Nevertheless, the precise relation among the
bifurcation in the classical potential in Fig. (1) or in the
corresponding classical model [12], the squeezing effect, and
the entanglement remains an interesting open problem in the
ultrastrong coupling limit of the model (1).
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