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Charge frustration effects in capacitively coupled two-dimensional Josephson-junction arrays
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We investigate the quantum phase transitions in two capacitively coupled two-dimensional Josephson-
junction arrays with charge frustration. The system is mapped ont8+hk andS=1/2 anisotropic Heisen-
berg antiferromagnets near the particle-hole symmetry line and near the maximal-frustration line, respectively,
which are in turn argued to be effectively described by a single quantum phase model. Based on the resulting
model, it is suggested that near the maximal-frustration line the system may undergo a quantum phase transi-
tion from the charge-density wave to the supersolid phase, which displays both diagonal and off-diagonal
long-range order.S0163-182609)03538-9

In recent years, various types of cotunneling transportorrelation of charges and the phase correlation of supercon-
have been of great interest in ultrasmall tunnel junctionsducting order parameters remain finite as the distance grows
which exhibit strong Coulomb blockade effédn particular, ~ arbitrarily large®®
cotunneling of the electron-hole pairs in two capacitively ~The system of coupled 2D square arrays, shown schemati-
coupled one-dimensionélD) arrays of small metallic junc- cally in Fig. 1, is described by the Hamiltonian
tions has been proposed theoreticallgnd demonstrated

. . 2 —1 ’ ’
experimentally’ revealing the remarkable effects of the cur- H=2e? > [n(r)—nglC . (r,r)[ni(r')—ng]
rent mirror. More recently, in capacitively coupled 1Refs. L
4 and 9 or two-dimensiondl (2D) Josephson-junction ar-

rays, the cotunneling of particle-hole paiwsith the particle —E; > co§ () —y(r+8e,)]
and hole standing for theexcessand deficit Cooper pair, Lo
respectively has been proposed even to drive the quantum =Hc+H;, (1)

phase transition from superconductor to insula&ly at zero  \hare the numben,(r) of the Cooper pairs and the phase

temperature. Here the particle-hole symmetry of the systen;bl(r) of the superconducting order parameter atsite the

may be broken by, e.g., the gate voltage applied between thg, 54y (=1,2) are quantum-mechanically conjugate vari-

array and the substrate. The resulting charge frustration igy.c. [n(r),y(r")]=i8,:5 The Josephson coupling
. y ’ rr! .

expected to affect the phase transition of the system in iahbori . dr+e ih & bei h
crucial way. For example, when the particle-hole symmetrxﬁe.tween neighboring s'|ters andr+e, (with €, €ing the
unit vector in the directionu=x,y) in each array is charac-

is broken maximally, the transport is governed by the cotun=""" .
neling of the particle-void pairéwith the void denoting the ~ t€fized by the coupling energi,, whereas the external
absence of an excess or deficit Cooper)paid the different chargeng=CoVy/2e induced on each island by the applied
nature of the associated phase transition has been pointed &€ voltageV, breaks the particle-hole symmetry of the
in one dimensiod. On the other hand, existing studies of system, introducing charge_ frustration. The two arrays are
coupled 2D arrays with charge frustration have concentrate§oUPled through the capacitantg between two grains at
upon the charge-vortex dualifywithout appreciable atten- the same positiom on the two arrays(Note the difference
tion to the phase transitions. from the Jpsephsc_m coupled multllaygred systewhere

In this paper, we extend the previous wddn two ca- Coqper-paw tur_melmg betw_ee_n layers is a]lovve'ﬂhe ca-
pacitively coupled 2D arrays of ultrasmall Josephson juncPacitance matrix characterizing the charging energy part
tions to investigate the charge-frustration effects on thdlc Of the Hamiltonian in Eq(1) can be written in the block
quantum phase transitions. In a manner similar to that of Reform:
4, we map the system to tfe=1 anisotropic Heisenberg
antiferromagnet near the particle-hole symmetry lines andto G/ (r,r')=C(r,r’")
the S=1/2 one near the maximal-frustration lines. It is then
argued that the two spin models can in effect be incorporategihereC(r,r’) is the usual intra-array capacitance matrix
into a single 2D quantum phase model with the effective
self-capacitance given by the coupling capacitance of the c(y r/)=C,8,,+C;>, [28, — 6, 1rsa — S rr—a 1,
original two-array system and the junction capacitance by u o oor
the intra-array junction capacitance. The resulting model in- €)
dicates that near the maximal frustration line the system mawith C, and C, being the self-capacitance and junction ca-
exhibit a quantum phase transition from the charge-densitpacitance, respectively. Although it is not essential in the
wave (CDW) to the super-solidSS phase. In the SS state, subsequent discussion as long as the interaction range is fi-
the system possesses both diagonal and off-diagonal longite, we assume for simplicity th&,/Cy=<1, keeping only
range ordefDLRO and ODLRO: Namely, both the density the on-site and the nearest-neighbor interactions between the
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FIG. 1. Schematic diagram of the two coupled 2D arrays. Each g, 2. Energy levels oH in Egs. (4) and corresponding
of the upper and lower arrays represents a 2D array composing théyarge configurations near the particle-hole symmetry line. Filled
system. and empty circles denote particles and holes, respectively; paired

(upper and lowersolid lines represent the two coupled arrays, the

charges. We also define charging energy scal®s couplings between which are illustrated by the dashed lines. The
=e?/2C,, E;=e%2C,, and E;=e/2C,, associated with low-lying energy levels satisfying, (r)=0 are well separated by a
the corresponding capacitances. large amount of energyof the order of Ey) from those with

In the regime of concern in this papet,>C,(=C,), n,(r)#0.
i.e., E,<Ey(=E,), the charging energy part of the Hamil-
tonian in Eq.(1) can be written conveniently as the sumn_(r)=0 for all r. Unlike the former case, the ground state

HC=H§+ Hc with each component defined to be of H¢ is nondegenerate and forms a Mott insulator charac-
. ) terized byn,(r)=n,(r)=0 for allr. As E; is turned on, the
HE=UoY [ni(r)—2ng]2+U; Y [no(r)—2n,] ground state oH is mixed with the states witm_(r)=
' e + 2. Accordingly, the relevant reduced Hilbert space is given
X[n+(f+éﬂ)—2ng], by &, wheren (r)=0 andn_(r)=0,£2 for all r.

Accordingly, it is instructive to project the Hamiltonian in
- 2, i Eq. (1) onto & (&g) for ng=<<1/4 (for Ing—1/2/<1/4); this .
He Vozr [n-(r)] Vl% n-(nn-(r+e,), @ results in the effective Hamiltonian, up to the second order in

E;/Ey,
where we have defined new charge varialiiegr)=n,(r) IO

+n,(r) and the interaction strengths are given bl H.=p
:ZEo, V02E|, U1:4(Cl/CO)E0, andVlz(C1/C|)E| . eff—
This representation of the charging energy p&gtallows us

to distinguish clearly the two interesting regions from each
other: near theparticle-hole symmetry line y=0 and near
themaximal-frustration line g=1/2, as one can see from the
energy spectra dfl¢ displayed in Figs. 2 and 3 for the two
regimes, respectivelfrecall thatUy>V,). (Since the system

is invariant withng—ng+ 1, we need to consider only the
range G<ny<<1.) As pointed out for two coupled 1D arrays
in Ref. 4, they follow the remarkable properties of the spec-
trum of Hc in each regime: Near the maximal-frustration
line, the charge configurations that do not satisfy the condi-
tion n (r)=1 (for all r) have a huge excitation gap of the
order of Ey. (Note that we are interested in the parameter
regimeE, ,E;<E,.) Furthermore, the ground statesHf , W | — —
separated from the excited states by the gap of the order of
E,, have twofold degeneracy for each corresponding to
n_(r)==1. This degeneracy is lifted by the Josephson cou-
pling termH; in Eq. (1) asE; is turned on. As a result, it is
convenient in this case to work within the reduced Hilbert
spaceSy, wheren,(r)=1 andn_(r)=+1 for eachr. Near FIG. 3. Energy levels and corresponding charge configurations
the particle-hole symmetry line, on the other hand, the lownear the maximal-frustration line. It should be noticed that the
energy charge configuration should satisfy the conditiorground state is twofold degenerate per site.
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respectively. In this case, the definitions of the pseudospin

operators in terms of the phase and charge operators are also
/ N different slightly from those in Eq6):
o % N (r)y—ny(r
E i i SZ(I’) =P % ,
I [l ] . .
St(r)y=Pe 1) (1-p)eti¢2p, (11)

ST (r)=Pe ¥ (1-P)et'4p,

Such spin-flip operators are associated with the cotunneling
of the particle-void pairs as displayed in Figb#
i In two dimensions, unlike the 1D case, neither of the two

d (spin-1 and spin-1/2 XXZ antiferromagnets described by
FIG. 4. Typical cotunneling processes relevaat near the E0s-(7) and(9) allow exact solutions. The simple mean-field
particle-hole symmetry line anth) near the maximal-frustration theory based on the Ginzburg-Landau appréadhdicates

line. The intermediate virtual state costs an energy of the order ofhat the spin-1XXZ antiferromagnet may exhibit a zero-
Eop. temperature phase transition from tK&-like phase to the

spin-1 Ising-like phase & ~1 or y;~1. In the charge pic-
whereP is the projection operatdf.Explicit implementation  ture, theXY-like phase corresponds to the superconducting
of the projection near the particle-hole symmetry line can b€SC) state displaying ODLRO, while the spin-1 Ising-like
achieved by first noting the correspondence between thphase characterized I87(r) =0 describes the Mott insulator
charge picture of the original model and the pseudosfin ( (MI) state with DLRO. On the other hand, mean-field-like

..

=1) picture in the reduced Hilbert spa€g: approache$ and numerical approachésto the spin-1/2
Ny (1) —ny(r) XXZ antiferromagnet suggest a zero-temperature phase tran-
S(r)=P — P sition from theXY-like phase to the spin-1/2 Ising-like phase
_ _ with staggered magnetization &~ +/C;/2C, or yq,~1,
S*(r)=\2Pe 1) (1-p)etid2p, (6)  corresponding to the SC state and the CDW state, respec-
~(r)=\2Pe 1%20(1— p)e*itip, tively.

Therefore, for the present, the projection of the Hamil-
In particular, the spin-flip operato®"™ andS™ manifest the tonian to get the effective spin model does not provide us
second-order cotunneling process of the particle-hole pairgith direct information about the phase transitions. Remark-
via an intermediate virtual state, as depicted in Fi@,4&and  ably, however, the spin models, given by EG&.and(9) in
mix the energy levels with unpaired particles or holes ofthe two regimes, can be obtained fronsiagle 2D quantum
energyU, and those with particle-hole pairs of energy# phase model(QPM), via appropriate projections. This
(see Fig. 2 It then follows that the effective Hamiltonian in strongly indicates that both regimes can be described by the

Eq. (5) takes the form Hamiltonian for the QPM:
., 1 1 - ~ ~
HXxe= 3 I [S(NP- 732 {S' (NS (r+e,) Hopu=2€"2, [n(r)=ng]C™4(r,r")[n(r') =g}
+S (NS (r+8,)}, 7 E3 -
(NS} v e cdn-dr+d)l a2

which describes the spin-1 2RXZ antiferromagnet! Here

the exchange interaction and the anisotropy ratio are givev\/here the effective Josephson-coupling eneEgﬁy4E is
B 0

by much reduced compared with the original intra-array value

EJ 1 E;, and the effective capacitance matrix reads
= and = ® o
0 , 1
. . . . . C(r,r')=C, 5rr’+72 [25rr'_5r,r’+é _5r,r'7é ]
respectively, with the dimensionless coupling constint Iz " .
E\/EJ2/32E|EO. Near the maximal-frustration line, on the (13
other hand, the effective Hamiltonian reduces to that for aNote that the self-capacitance is given By instead of the
spin-1/2 2DXXZ antiferromagnet original valueC,, while the junction capacitance is given by
_ C4/2. The value of charge frustratio?mgl is related to that
1/2 Z Z + 1
H3xz = 71’2‘J2 S(ns (r+e ‘JE ST (s (r (ng) of the original model given by Ed1) in the following
. A way: At the symmetry line rfy=0) and the maximal-
e,)+tS (r)S"(r+e,)}, (9)  frustration line (iy=1/2) of the original model, we have

with the exchange interaction and the anisotropic ratio g|veﬁ19 ng. Near those lines, however, the valuengfis rather
by insensitive to that ofy: Namely,ng remains close to zero

and to 1/2 in the rather large ranges aroume-0 and 1/2,

2
J~E_ and 71/2:& i (10)  respectively, changing its value sharply negr=1/4. Ac-
4E, 2C, k2 cordingly, the QPM in Eq(12) is either near the symmetry
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line (ng=~0) or near the maximal-frustration line§~1/2) g

except for the more or less narrow range aronge 1/4. .
The reduction of the above QPM to the spin-1 and the \ sc'
spin-1/2XXZ models via appropriate projections can be rec- MI

ognized as follows: In the ca§eg~0, the charging energy e

reaches its minimum at(r)=0. This ground state becomes \SS
mixed with the states(r)==*1, as the Josephson coupling CDW, : =
is turned on. On the other hand, ﬁfngrw 1/2, the minimum of !
the charging energy arisesratr) = 0,1, yielding twofold de- :
generate ground states. These situations are essentially the MI / So
same as those of the original model with charge frustration 0

ng. We thus project the QPM onto the spa&?{n(r)

=0, 1} and&q={n(r) =0,1} with the psuedospin operators g, 5 Schematic phase diagram of the system. The supercon-
redefined as ducting SC phase is distinguished from the SC phase in that the
20N underlying transport mechanism is the cotunneling process instead
S{r)=Pn(r)P, of the single-charge transport.

K

S*(r)=2Pe 40P, (14)
existence of the SS phase conflicts with the prediction of a
S (= \/Epeifﬁ(r)p, direct transition from the CDW to the SC based on the spin-
. - 1/2 XXZ model in Eq.(9), but such conflict also appears
in spacets and when one simply truncates the effects of higher energy levels

in the QPM® These arguments finally yield the schematic

Z( ) = _
S(n=Pn(rP-1/2, phase diagram shown in Fig. 5, where the thick solid lines

S*(n=Pe 1¢Op (15) represent the phase boundaries of the Sl transitions, separat-
ing the SC from the Mlnear the symmetry lineor from the
S (r)=Pe*p, CDW (near the maximal-frustration line depicted by the

. ~ o . dashed-dotted lineNote that these boundariésear the two
in spacety ; these projections reproduce, in the zeroth ordefines) change rather gradually ag is varied, which reflects

of E,/E,, both the spin-1 and the spin-12XZ models in 4t hear the two lines the effective charge frustratigrin

Egs. (7) and (9) for ng<1/4 and|ng—1/2<1/4, respec-  ihe QpM is insensitive to the original charge frustratig

tively. ) L The dashed lines in Fig. 5 represent the somewhat specula-
_As we proceed to_higher orders, the projection of thegye houndaries discussed above; here the region occupied by

single-layer QPM in Eq(12) in general yields the coeffi- he 55 phase might be small because in the QPM the self-

. 71 .
cients of thenth-order terms &/ E,I),(n ) times larger than  canacitance is much larger than the junction capacitance
those in the projection of the original model in EG). In (C,>C,/2).8

spite of such discrepancy in numerical coefficients, the two |, conclusion, we have investigated the quantum phase
projections (of the original model and of the single-layer 4nsitions in two capacitively coupled two-dimensional
QPM) onto their own spin models should bring about quite yogenhson-junction arrays with charge frustration. The sys-
similar structures. For example, mixing of the energy levelsa i has been mapped into te=1 and theS=1/2 aniso-

in & with those satlsfy|ngn,(r)=.i 46, ... [but St'”. tropic XXZ antiferromagnets near the particle-hole symmetry
keepingn.,.(r)=0] always occurs via the virtual states with |ine and the maximal-frustration line, respectively. We have
energies of the order &,. Consequently, at least in the tWo {hen argued that the two spin models in effect can be incor-
regimes of concern here, it is not |rrele\{ant to consider theporated into a single quantum phase model. Based on the
single-layer QPM in Eq(12) as an effective model for the oq 1ting model, it has been suggested that near the maximal-
original system. Quite naturally, the deviation of the QPM in¢r siration line the system may exhibit a quantum phase tran-
Eq. (12) from the original model increases wit, . sition from the charge-density wave to the supersolid phase,

The 2D QPM has been studied extensively in recent yeargjsp|aying both diagonal and off-diagonal long-range order.
(see, e.g., Ref.)8 Remarkably, forln,—1/2/<1/4, it was

suggested that there may exist an unusual SS phase with both This work was supported in part by the SNU Research
the DLRO and ODLRO, i.e., the coexistence of the crystal-Fund, by the Korea Research Foundation, and by the Korea
line charge ordering together with superconductivity. TheScience and Engineering Foundation.
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