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Charge frustration effects in capacitively coupled two-dimensional Josephson-junction arrays
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We investigate the quantum phase transitions in two capacitively coupled two-dimensional Josephson-
junction arrays with charge frustration. The system is mapped onto theS51 andS51/2 anisotropic Heisen-
berg antiferromagnets near the particle-hole symmetry line and near the maximal-frustration line, respectively,
which are in turn argued to be effectively described by a single quantum phase model. Based on the resulting
model, it is suggested that near the maximal-frustration line the system may undergo a quantum phase transi-
tion from the charge-density wave to the supersolid phase, which displays both diagonal and off-diagonal
long-range order.@S0163-1829~99!03538-9#
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In recent years, various types of cotunneling transp
have been of great interest in ultrasmall tunnel junctio
which exhibit strong Coulomb blockade effect.1 In particular,
cotunneling of the electron-hole pairs in two capacitive
coupled one-dimensional~1D! arrays of small metallic junc-
tions has been proposed theoretically2 and demonstrated
experimentally,3 revealing the remarkable effects of the cu
rent mirror. More recently, in capacitively coupled 1D~Refs.
4 and 5! or two-dimensional6 ~2D! Josephson-junction ar
rays, the cotunneling of particle-hole pairs~with the particle
and hole standing for theexcessand deficit Cooper pair,
respectively! has been proposed even to drive the quant
phase transition from superconductor to insulator~SI! at zero
temperature. Here the particle-hole symmetry of the sys
may be broken by, e.g., the gate voltage applied between
array and the substrate. The resulting charge frustratio
expected to affect the phase transition of the system i
crucial way. For example, when the particle-hole symme
is broken maximally, the transport is governed by the cot
neling of the particle-void pairs~with the void denoting the
absence of an excess or deficit Cooper pair! and the different
nature of the associated phase transition has been pointe
in one dimension.4 On the other hand, existing studies
coupled 2D arrays with charge frustration have concentra
upon the charge-vortex duality,7 without appreciable atten
tion to the phase transitions.

In this paper, we extend the previous work6 on two ca-
pacitively coupled 2D arrays of ultrasmall Josephson ju
tions to investigate the charge-frustration effects on
quantum phase transitions. In a manner similar to that of R
4, we map the system to theS51 anisotropic Heisenberg
antiferromagnet near the particle-hole symmetry lines an
the S51/2 one near the maximal-frustration lines. It is th
argued that the two spin models can in effect be incorpora
into a single 2D quantum phase model with the effect
self-capacitance given by the coupling capacitance of
original two-array system and the junction capacitance
the intra-array junction capacitance. The resulting model
dicates that near the maximal frustration line the system m
exhibit a quantum phase transition from the charge-den
wave ~CDW! to the super-solid~SS! phase. In the SS state
the system possesses both diagonal and off-diagonal l
range order~DLRO and ODLRO!: Namely, both the density
PRB 600163-1829/99/60~14!/10455~5!/$15.00
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correlation of charges and the phase correlation of super
ducting order parameters remain finite as the distance gr
arbitrarily large.4,8

The system of coupled 2D square arrays, shown schem
cally in Fig. 1, is described by the Hamiltonian

H52e2 (
l ,l 8;r ,r8

@nl~r !2ng#Cl l 8
21

~r ,r 8!@nl 8~r 8!2ng#

2EJ (
l ,r ,m

cos@f l~r !2f l~r1êm!#

[HC1HJ , ~1!

where the numbernl(r ) of the Cooper pairs and the phas
f l(r ) of the superconducting order parameter at siter on the
lth array (l 51,2) are quantum-mechanically conjugate va
ables: @nl(r ),f l(r 8)#5 id l l 8d rr 8 . The Josephson couplin
between neighboring sitesr and r1êm ~with êm being the
unit vector in the directionm5x,y) in each array is charac
terized by the coupling energyEJ , whereas the externa
chargeng[C0Vg/2e induced on each island by the applie
gate voltageVg breaks the particle-hole symmetry of th
system, introducing charge frustration. The two arrays
coupled through the capacitanceCI between two grains a
the same positionr on the two arrays.~Note the difference
from the Josephson coupled multilayered system,9 where
Cooper-pair tunneling between layers is allowed.! The ca-
pacitance matrixC characterizing the charging energy pa
HC of the Hamiltonian in Eq.~1! can be written in the block
form:

Cl l 8~r ,r 8![C~r ,r 8!F1 0

0 1G1d r ,r8CIF 1 21

21 1G , ~2!

whereC(r ,r 8) is the usual intra-array capacitance matrix

C~r ,r 8![C0 d rr 81C1(
m

@2d rr 82d r ,r81êm
2d r ,r82êm

#,

~3!
with C0 andC1 being the self-capacitance and junction c
pacitance, respectively. Although it is not essential in
subsequent discussion as long as the interaction range
nite, we assume for simplicity thatC1 /C0&1, keeping only
the on-site and the nearest-neighbor interactions between
10 455 ©1999 The American Physical Society
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charges. We also define charging energy scalesE0
[e2/2C0 , E1[e2/2C1 , and EI[e2/2CI , associated with
the corresponding capacitances.

In the regime of concern in this paper,CI@C0 (*C1),
i.e., EI!E0 (&E1), the charging energy part of the Hami
tonian in Eq. ~1! can be written conveniently as the su
HC5HC

11HC
2 with each component defined to be

HC
1[U0(

r
@n1~r !22ng#21U1(

r ,m
@n1~r !22ng#

3@n1~r1êm!22ng#,

HC
2[V0(

r
@n2~r !#21V1(

r ,m
n2~r !n2~r1êm!, ~4!

where we have defined new charge variablesn6(r )[n1(r )
6n2(r ) and the interaction strengths are given byU0
.2E0 , V0.EI , U1.4(C1 /C0)E0 , and V1.(C1 /CI)EI .
This representation of the charging energy partHC allows us
to distinguish clearly the two interesting regions from ea
other: near theparticle-hole symmetry line ng50 and near
themaximal-frustration line ng51/2, as one can see from th
energy spectra ofHC displayed in Figs. 2 and 3 for the tw
regimes, respectively~recall thatU0@V0). ~Since the system
is invariant withng→ng11, we need to consider only th
range 0<ng,1.) As pointed out for two coupled 1D array
in Ref. 4, they follow the remarkable properties of the sp
trum of HC in each regime: Near the maximal-frustratio
line, the charge configurations that do not satisfy the con
tion n1(r )51 ~for all r ) have a huge excitation gap of th
order of E0 . ~Note that we are interested in the parame
regimeEI ,EJ!E0 .! Furthermore, the ground states ofHC ,
separated from the excited states by the gap of the orde
EI , have twofold degeneracy for eachr , corresponding to
n2(r )561. This degeneracy is lifted by the Josephson c
pling termHJ in Eq. ~1! asEJ is turned on. As a result, it is
convenient in this case to work within the reduced Hilb
spaceEd , wheren1(r )51 andn2(r )561 for eachr . Near
the particle-hole symmetry line, on the other hand, the lo
energy charge configuration should satisfy the condit

FIG. 1. Schematic diagram of the two coupled 2D arrays. E
of the upper and lower arrays represents a 2D array composing
system.
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n1(r )50 for all r . Unlike the former case, the ground sta
of HC is nondegenerate and forms a Mott insulator char
terized byn1(r )5n2(r )50 for all r . As EJ is turned on, the
ground state ofHC is mixed with the states withn2(r )5
62. Accordingly, the relevant reduced Hilbert space is giv
by Es , wheren1(r )50 andn2(r )50,62 for all r .

Accordingly, it is instructive to project the Hamiltonian i
Eq. ~1! onto Es (Ed) for ng!1/4 ~for ung21/2u!1/4); this
results in the effective Hamiltonian, up to the second orde
EJ /E0 ,

Heff[PFH1HJ

12P

E2HC
HJGP, ~5!

h
he

FIG. 2. Energy levels ofHC in Eqs. ~4! and corresponding
charge configurations near the particle-hole symmetry line. Fi
and empty circles denote particles and holes, respectively; pa
~upper and lower! solid lines represent the two coupled arrays, t
couplings between which are illustrated by the dashed lines.
low-lying energy levels satisfyingn1(r )50 are well separated by a
large amount of energy~of the order of E0) from those with
n1(r )Þ0.

FIG. 3. Energy levels and corresponding charge configurati
near the maximal-frustration line. It should be noticed that
ground state is twofold degenerate per site.
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whereP is the projection operator.10 Explicit implementation
of the projection near the particle-hole symmetry line can
achieved by first noting the correspondence between
charge picture of the original model and the pseudospinS
51) picture in the reduced Hilbert spaceEs :

Sz~r ![P
n1~r !2n2~r !

2
P,

S1~r ![A2Pe2 if1(r )~12P!e1 if2(r )P, ~6!

S2~r ![A2Pe2 if2(r )~12P!e1 if1(r )P.

In particular, the spin-flip operatorsS1 andS2 manifest the
second-order cotunneling process of the particle-hole p
via an intermediate virtual state, as depicted in Fig. 4~a!, and
mix the energy levels with unpaired particles or holes
energyU0 and those with particle-hole pairs of energy 4V0
~see Fig. 2!. It then follows that the effective Hamiltonian i
Eq. ~5! takes the form

HXXZ
S515

1

2
g1J(

r
@Sz~r !#22

1

4
J(

r ,m
$S1~r !S2~r1êm!

1S2~r !S1~r1êm!%, ~7!

which describes the spin-1 2DXXZ antiferromagnet.11 Here
the exchange interaction and the anisotropy ratio are g
by

J.
EJ

2

4E0
and g1.

1

K2
, ~8!

respectively, with the dimensionless coupling constantK
[AEJ

2/32EIE0. Near the maximal-frustration line, on th
other hand, the effective Hamiltonian reduces to that fo
spin-1/2 2DXXZ antiferromagnet

HXXZ
S51/25g1/2J(

r ,m
Sz~r !Sz~r1êm!2

1

2
J(

rm
$S1~r !S2~r

1êm!1S2~r !S1~r1êm!%, ~9!

with the exchange interaction and the anisotropic ratio gi
by

J.
EJ

2

4E0
and g1/2 .

C1

2CI

1

K2
, ~10!

FIG. 4. Typical cotunneling processes relevant~a! near the
particle-hole symmetry line and~b! near the maximal-frustration
line. The intermediate virtual state costs an energy of the orde
E0 .
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respectively. In this case, the definitions of the pseudos
operators in terms of the phase and charge operators are
different slightly from those in Eq.~6!:

Sz~r ![P
n1~r !2n2~r !

2
P,

S1~r ![Pe2 if1(r )~12P!e1 if2(r )P, ~11!

S2~r ![Pe2 if2(r )~12P!e1 if1(r )P.

Such spin-flip operators are associated with the cotunne
of the particle-void pairs as displayed in Fig. 4~b!.

In two dimensions, unlike the 1D case, neither of the t
~spin-1 and spin-1/2! XXZ antiferromagnets described b
Eqs.~7! and~9! allow exact solutions. The simple mean-fie
theory based on the Ginzburg-Landau approach12 indicates
that the spin-1XXZ antiferromagnet may exhibit a zero
temperature phase transition from theXY-like phase to the
spin-1 Ising-like phase atK;1 or g1;1. In the charge pic-
ture, theXY-like phase corresponds to the superconduct
~SC! state displaying ODLRO, while the spin-1 Ising-lik
phase characterized bySz(r )50 describes the Mott insulato
~MI ! state with DLRO. On the other hand, mean-field-li
approaches13 and numerical approaches14 to the spin-1/2
XXZ antiferromagnet suggest a zero-temperature phase
sition from theXY-like phase to the spin-1/2 Ising-like phas
with staggered magnetization atK;AC1/2CI or g1/2;1,
corresponding to the SC state and the CDW state, res
tively.

Therefore, for the present, the projection of the Ham
tonian to get the effective spin model does not provide
with direct information about the phase transitions. Rema
ably, however, the spin models, given by Eqs.~7! and~9! in
the two regimes, can be obtained from asingle2D quantum
phase model~QPM!, via appropriate projections. Thi
strongly indicates that both regimes can be described by
Hamiltonian for the QPM:

HQPM52e2(
r ,r8

@n~r !2ñg#C21~r ,r 8!@n~r 8!2ñg#

2
EJ

2

4E0
(
r ,m

cos@f~r !2f~r1êm!#, ~12!

where the effective Josephson-coupling energyEJ
2/4E0 is

much reduced compared with the original intra-array va
EJ , and the effective capacitance matrix reads

C~r ,r 8![CI d rr 81
C1

2 (
m

@2d rr 82d r ,r81êm
2d r ,r82êm

#.

~13!

Note that the self-capacitance is given byCI instead of the
original valueC0, while the junction capacitance is given b
C1/2. The value of charge frustrationñg is related to that
(ng) of the original model given by Eq.~1! in the following
way: At the symmetry line (ng50) and the maximal-
frustration line (ng51/2) of the original model, we have
ñg5ng . Near those lines, however, the value ofñg is rather
insensitive to that ofng : Namely, ñg remains close to zero
and to 1/2 in the rather large ranges aroundng50 and 1/2,
respectively, changing its value sharply nearng'1/4. Ac-
cordingly, the QPM in Eq.~12! is either near the symmetr

of
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10 458 PRB 60MINCHUL LEE, MAHN-SOO CHOI, AND M. Y. CHOI
line (ñg'0) or near the maximal-frustration line (ñg'1/2)
except for the more or less narrow range aroundng51/4.

The reduction of the above QPM to the spin-1 and
spin-1/2XXZ models via appropriate projections can be r
ognized as follows: In the caseñg'0, the charging energ
reaches its minimum atn(r )50. This ground state become
mixed with the statesn(r )561, as the Josephson couplin
is turned on. On the other hand, forñg'1/2, the minimum of
the charging energy arises atn(r )50,1, yielding twofold de-
generate ground states. These situations are essentiall
same as those of the original model with charge frustra
ng . We thus project the QPM onto the spacesẼs[$n(r )
50,61% andẼd[$n(r )50,1% with the psuedospin operato
redefined as

Sz~r ![Pn~r !P,

S1~r ![A2Pe2 if(r )P, ~14!

S2~r ![A2Peif(r )P,

in spaceẼs and

Sz~r ![Pn~r !P21/2,

S1~r ![Pe2 if(r )P, ~15!

S2~r ![Peif(r )P,

in spaceẼd ; these projections reproduce, in the zeroth or
of EJ /EI , both the spin-1 and the spin-1/2XXZ models in
Eqs. ~7! and ~9! for ng!1/4 and ung21/2u!1/4, respec-
tively.

As we proceed to higher orders, the projection of
single-layer QPM in Eq.~12! in general yields the coeffi
cients of thenth-order terms (E0 /EI)

(n21) times larger than
those in the projection of the original model in Eq.~1!. In
spite of such discrepancy in numerical coefficients, the
projections ~of the original model and of the single-lay
QPM! onto their own spin models should bring about qu
similar structures. For example, mixing of the energy lev
in Es with those satisfyingn2(r )564,66, . . . @but still
keepingn1(r )50] always occurs via the virtual states wi
energies of the order ofE0 . Consequently, at least in the tw
regimes of concern here, it is not irrelevant to consider
single-layer QPM in Eq.~12! as an effective model for th
original system. Quite naturally, the deviation of the QPM
Eq. ~12! from the original model increases withEJ .

The 2D QPM has been studied extensively in recent y
~see, e.g., Ref. 8!. Remarkably, forung21/2u!1/4, it was
suggested that there may exist an unusual SS phase with
the DLRO and ODLRO, i.e., the coexistence of the crys
line charge ordering together with superconductivity. T
e
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the
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ls
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existence of the SS phase conflicts with the prediction o
direct transition from the CDW to the SC based on the sp
1/2 XXZ model in Eq. ~9!, but such conflict also appear
when one simply truncates the effects of higher energy lev
in the QPM.8 These arguments finally yield the schema
phase diagram shown in Fig. 5, where the thick solid lin
represent the phase boundaries of the SI transitions, sep
ing the SC from the MI~near the symmetry line! or from the
CDW ~near the maximal-frustration line depicted by th
dashed-dotted line!. Note that these boundaries~near the two
lines! change rather gradually asng is varied, which reflects
that near the two lines the effective charge frustrationñg in
the QPM is insensitive to the original charge frustrationng .
The dashed lines in Fig. 5 represent the somewhat spec
tive boundaries discussed above; here the region occupie
the SS phase might be small because in the QPM the
capacitance is much larger than the junction capacita
(CI@C1/2).8

In conclusion, we have investigated the quantum ph
transitions in two capacitively coupled two-dimension
Josephson-junction arrays with charge frustration. The s
tem has been mapped into theS51 and theS51/2 aniso-
tropic XXZantiferromagnets near the particle-hole symme
line and the maximal-frustration line, respectively. We ha
then argued that the two spin models in effect can be inc
porated into a single quantum phase model. Based on
resulting model, it has been suggested that near the maxi
frustration line the system may exhibit a quantum phase tr
sition from the charge-density wave to the supersolid pha
displaying both diagonal and off-diagonal long-range ord

This work was supported in part by the SNU Resea
Fund, by the Korea Research Foundation, and by the Ko
Science and Engineering Foundation.

FIG. 5. Schematic phase diagram of the system. The super
ducting SC8 phase is distinguished from the SC phase in that
underlying transport mechanism is the cotunneling process ins
of the single-charge transport.
e v.
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