Tutorial (27 March 2019)

Tutorial: Circuit Quantum Electrodynamics MAHN-SOO CHOI KOREA UNIVERSITY

OVERVIEW

- Introduction
- 2. Superconducting Resonator
- 3. Superconducting Circuit QED Systems
- 4. Exotic Quantum States of Photons
- 5. Quantum Sensing of Charge Fluctuations
- 7. Summary

6. Fundamental light-topological matter interaction

GENERAL INTRODUCTION BACKGROUND & MOTIVATIONS

LIGHT-MATTER INTERACTION

- Simple yet highly non-trivial.
- All essential features of lightmatter interaction.

$H = \omega a^{\dagger} a + g(a + a^{\dagger})\sigma^{x} + \frac{1}{2}\Omega\sigma^{z}$

Two Limitations of the conventional cavity QED

I. The coupling is weak. 2. The qubit is not topological.

CIRCUIT QED SYSTEM

Blais et al. (PRA, 2004)

Wallraff et al. (Nature, 2004)

LIGHT & TOPOLOGICAL MATTER

What is the smallest unit (if any) of the topological matter? A simple yet quintessence-seizing model of topological matter?

I. To realize topological qubits based on Josephson junction arrays.2. To achieve the topological QED architecture (with strong coupling).

3. To explore the fundamental light-topological matter interaction.

SUPERCONDUCTING RESONATOR Cavity for Micro-Wave Photons

Superconducting Transmission Line

Superconducting Transmission Line

$$\mathscr{L} = \int dx \, rac{1}{2} \left[(\partial_t \phi)^2 - v^2 (\partial_x \phi)^2 \right] , \quad v := rac{1}{\sqrt{\ell}}$$

EQUIVALENT CIRCUIT

$$\mathscr{L} = \sum_{n} \left[\frac{1}{2} L \dot{\Phi}_n^2 - \frac{1}{2} L \omega_{LC}^2 (\Phi_n - \Phi_{n-1})^2 \right]$$

 $\mathscr{L} = \int dx \frac{1}{2} \left[(\partial_t \phi)^2 - v^2 (\partial_x \phi)^2 \right], \quad v := \frac{1}{\sqrt{\ell c}}$ $\hat{\phi}(x) = \sum e^{ikx - i\omega t} \hat{a}_k + e^{-ikx + i\omega t} \hat{a}_k^{\dagger}$ $i\hat{\pi}(x) = \sum e^{ikx-i\omega t}\hat{a}_k - e^{-ikx+i\omega t}\hat{a}_k^{\dagger}$

QUANTIZATION

 $\hat{H} = \sum \hbar \omega_k \hat{a}_k^{\dagger} \hat{a}_k , \quad \omega_k := vk$

Resonator (Cavity)

$E_{\rm rms} = 0.2 \, {\rm V/m}$

 $H_{\rm cavity} = \omega a^{\dagger} a$

 $\omega/2\pi \sim 5\,\mathrm{GHz}$

CIRCUIT QED SYSTEM

$g/2\pi \sim 50 \,\mathrm{MHz}$

 $H_{\rm coupling} = g(a^{\dagger} + a)\sigma^{x}$

RABI HAMILTONIAN

 $\omega/2\pi \sim 5\,\mathrm{GHz}$

$\Omega/2\pi\sim 5\,{ m GHz}$

CIRCUIT QED SYSTEM

mmmmmm

$g/2\pi pprox 100 \,\mathrm{MHz}$

$H_{\rm coupling} = g(a^{\dagger} + a)\sigma^{x}$

Houck et al. (Nature, 2007)

Exotic Quantum States of Photons Photon BI Ockade and Dei Ocai Ization

Phys. Rev. Lett. 116, 153601 (2016)

 $\rightarrow Mm$ || M/ I il M/m $\sim q (a^{+}+a)(\sigma^{+}+\sigma^{-})$ *PHOTON BLOCKADE*

picture from Schmidt et al. (PRB, 2010)

Recurrent Delocalization

QUASI-EQUILIBRIUM

BACK TO THE RABI MODEL I from the weak-coupling limit

The Rabi Model

$H_{\text{Rabi}} = \omega a^{\dagger} a + \frac{1}{2} \Omega \sigma^{z} + g(a^{\dagger} + a) \sigma^{x}$

κ : cavity photon loss rate
 γ : qubit decoherence rate

Weak-Coupling Limit

WEAK-COUPLING LIMIT g = 0

 $|0,\uparrow\rangle$

 $|\mathsf{3},\downarrow
angle$

 $|2,\downarrow
angle$

 $|1,\downarrow
angle$

 $|0,\downarrow
angle$

"STRONG" COUPIING

Jaynes-Cummings Model (Rotating Wave Approximation)

$\kappa, \gamma \ll g \ll \omega$

"STRONG" COUPLING

Jaynes-Cummings Model (Rotating Wave Approximation)

 $|0,\downarrow
angle$

 $g \ll \omega$

PHOTON BLOCKADE

Schmidt et al., (PRB, 2010); Raftery et al., (PRX, 2014)

red curve: no decoherence, no photon loss black curve: small decoherence+photon loss

BACK TO THE RABI MODEL II from the (infinitely) strong-coupling limit

INFINITELY STRONG-COUPLING LIMIT $g \rightarrow \infty$ $H_{\text{Rabi}} = \omega a^{\dagger} a + \frac{1}{2} \omega \sigma^{z} + g(a^{\dagger} + a)\sigma^{x}$ $|n,\pm\rangle = D(\pm g/\omega)|n\rangle \times |\pm\rangle$ $D(z) \equiv \exp(za^{\dagger} - z^*a)$ $E_{n,\pm} \approx \omega n + \mathcal{O}(e^{-g^2/2\omega^2})$

Parity Conserving Representation Hwang & Choi (PRA, 2010; PRB, 2013) $H_{\text{Rabi}} = \omega a^{\dagger} a + \frac{1}{2} \Omega \sigma^{z} + g(a^{\dagger} + a) \sigma^{x}$

 $\tau^{z} \equiv \cos(\pi a^{\dagger} a) \sigma^{z}$

 $H_{\text{Rabi}} = \omega b^{\dagger} b - g(b^{\dagger} + b) + \frac{1}{2} \Omega \cos(\pi b^{\dagger} b) \tau^{z}$

 $b \equiv a\sigma^{x}$

DRESSED STATES

(Generalized Rotating Wave Approximation)

Feranchuk et al. (JPA, 1996); Irish (PRL, 2007) Hwang & Choi (PRA, 2010; PRB, 2013)

 $|n, e/o\rangle = D_b(g/\omega) |n\rangle_b \times |e/o\rangle$

 $E_{n,e/o} \approx \omega n + \mathcal{O}(e^{-g^2/2\omega^2}) \mid g \gg \omega$

One more transition!

QUASI-EQUILIBRIUM

DUALITY

Hwang & Choi (PRA, 2010) Hwang, Puebla, & Plenio (PRL, 2015)

 $H \rightarrow \widetilde{H} = D^{\dagger}(\alpha) HD(\alpha),$

$\widetilde{H} \approx \omega a^{\dagger} a + \frac{1}{2} \widetilde{\Omega} \widetilde{\sigma}^{z} - \widetilde{g} (a^{\dagger} + a) \widetilde{\sigma}^{x}$

$$\alpha \equiv \frac{1}{2} \sqrt{\frac{\Omega}{\omega} \left(\frac{4g^2}{\omega\Omega} - \frac{\omega\Omega}{4g^2}\right)}$$

 ω $= \overline{4g^2}$

$\widetilde{H} = \omega a^{\dagger} a + \frac{1}{2} \widetilde{\Omega} \widetilde{\sigma}^{z} - \widetilde{g} (a^{\dagger} + a) \widetilde{\sigma}^{z}$

 $2\tilde{g}^2$ $\omega \Sigma Z$

DI JAI ITY!

Hwang & Choi (PRA, 2010) Hwang, Puebla, & Plenio (PRL, 2015)

QUANTUM SENSING

Kondo Physics

Kondo Effect in Nano-Devices

- Glazman & Raikh, Pis'ma Zh. Eksp. Teor. Fiz. (1988),
- Ng & Lee, Phys. Rev. Lett. (1988), ...
- Goldhaber-Gordon et al., Nature (1998),
- Cronenwett et al., Science (1998),
- Wiel et al., Science (2000), ...

Charge vs Spin Fluctuations

New Experiment on Kondo

Nature 545, 71 (2017)

M. Desjardins, J. Viennot, M. Dartiailh, L. Bruhat, M. Delbecq, M. Lee, M.-S. Choi, A. Cottet, T. Kontos

$$\chi := \frac{\partial N}{\partial \mu} = \langle \langle n_d; n_d \rangle$$

$$gn_d(a+a^\dagger)+H_{
m photon\ loss}$$

- $g^2 D_0^R(\omega) \chi(\omega) D^R(\omega)$
 $rac{1}{-g^2 \chi(\omega)+i\kappa}$

Coulomb blockade Regime

KONDO RIDGE

Manipulation of Decoherence

FUNDAMENTAL INTERACTION? Minimal Model for Light-Topological Matter Interaction?

What is the Wikipedia animation about? Homeomorphism

Topological states cannot be studied by homeomorphism!

HOMEOMORPHISM VS HOMOTOPY

- "Homeomorphism" concerns about the continuous deformation of the topological space.
- maps from one to another topological space.

"Homotopy" distinguishes continuous variations of continuous

FROM MOMENTUM SPACE TO HILBERT SPACE (FROM LATTICE TO WAVE FUNCTIONS)

SU-SCHRIEFFER-HEEGER MODEL (ID SPINLESS FERMION ON A BIPARTITE LATTICE)

k∈BZ

$H(k) = T \cdot \sigma$,

 $\hat{H} = \sum_{k \in \mathbb{D}^{2}} \hat{\psi}^{\dagger}(k) H(k) \hat{\psi}(k), \quad H(k) := \begin{bmatrix} 0 & T(k) \\ T^{*}(k) & 0 \end{bmatrix}, \quad \hat{\psi}(k) := \begin{bmatrix} \psi_{A}(k) \\ \psi_{B}(k) \end{bmatrix}$

$$T(k) := \begin{bmatrix} v - w \cos k \\ -w \sin k \\ 0 \end{bmatrix}$$

SU-Schrieffer-Heeger Model (ID Spinless Fermion on a Bipartite Lattice)

SU-SCHRIEFFER-HEEGER MODEL (ID Spinless Fermion on a Bipartite Lattice)

SU-SCHRIEFFER-HEEGER MODEL (ID Spinless Fermion on a Bipartite Lattice)

SU-SCHRIEFFER-HEEGER MODEL (ID Spinless Fermion on a Bipartite Lattice)

TOPOLOGICAL SUPERCONDUCTOR

Δ

Kitaev (cond-mat/0010440)

Alicea et al. (Nat. Phys., 2011)

non-topological

Bloch sphere

topological

Ordered (broken symmetry)

Disordered

STATES OF MATTER Symmetry vs. Topology

Topological number = +1

Topological number = 0

Topological number = -1

"SYNTHETIC" KITAEV QUANTUM WIRE (Synthetic Spin-Orbit Coupling)

Synthetic Kitaev Quantum Wire (Synthetic Spin-Orbit Coupling) - h.c.) *⊢ h.c*. π

$$egin{aligned} H &= \sum_{\ell=0}^{L-1} \sum_{\sigma=\uparrow,\downarrow} \left[\epsilon_\ell b_{\ell\sigma}^\dagger b_{\ell\sigma} - t \left(b_{\ell,\sigma}^\dagger b_{\ell+1,\sigma} + - lpha t \sum_\ell \left[\left(b_{\ell,\uparrow}^\dagger b_{\ell+1,\downarrow} - b_{\ell,\downarrow}^\dagger b_{\ell,\uparrow}
ight) +
ight]
ight] \end{aligned}$$

- Conceptually straightforward.
- The chain index plays the role of isospin.
- Dealing with Bosons (instead of Fermions).

CAPACITIVELY COUPLED JOSEPHSON JUNCTION LADDER

Choi, Choi & Lee (PRL, 1998) Lee, Choi & Choi (PRB, 2003) Shimada & Delsing (PRL, 2000)

osephson junction

Capacitive coupling

Moebius Josephson Ladder (MJL)

Kitaev (US Patent, 2010; cond-mat/0609441)

twisted boundary condition periodic boundary condition

Moebius Josephson Ladder (MJL)

Kitaev (US Patent, 2010; cond-mat/0609441)

- Topology in the real space (unlike most other topological materials)
- The energy scales as $\sim I/L$.

twisted boundary condition

LIGHT-TOPOLOGICAL QUBIT COUPLING SCHEMES Prototypes Based on Josephson Junction Arrays

Synthetic Kitaev Quantum Wire

- Conceptually straightforward.
- The electric field of photons plays the role of the magnetic field for the synthetic Kitaev quantum wire.
- The coupling is thus very strong as the islands are *microscopically large* (still *macroscopically small*).

le of the antum wire. lands are small).
Moebius Josephson Ladder: 1

- Modulations of quantum phases only.
- Big difference in scales (centimeters vs sub-millimeters)
- Spatiotemporal effects of the circuit resonator?

(Kitaev's Example, cond-mat/0609441)

Moebius Josephson Ladder: II

- Directly switching between the periodic boundary condition and the twisted boundary condition.
- Effectively switching the topological states of the Moebius Josephson ladder.

- Myung-Joong Hwang (Univ of Ulm, Germany) • Myungshik Kim (Imperial College London, UK)
- Takis Kontos (ENS Paris, France) • Audrey Cottet (ENS Paris, France) • Matt. Desjardins (ENS Paris, France)

ACKNOWLEDGMENTS