Precision Metrology with Bose-Einstein Condensates

Jae Hoon Lee Korea Research Institute for Standards and Science

- 0. Why ultracold atoms?
- 1. Making BECs
- 2. BEC matter wave interferometer
- 3. Quantum Simulator (Kondo lattice model)

Cavity optomechanics

Quick recap of QND talk

Quick recap of QND talk

atom + optomechanics

Ultracold Atoms

The Nobel Prize in Physics 1997

Photo from archive. Steven Chu Prize share: 1/3

archive. Claude Cohen-Tannoudji

archive. William D. Phillips

Prize share: 1/3

The Nobel Prize in Physics 2001

archive.

Prize share: 1/3

Photo from the Nobel Foundation archive. Eric A. Cornell Prize share: 1/3

archive Wolfgang Ketterle Prize share: 1/3

Carl E. Wieman Prize share: 1/3

Ultracold atom experiments are hard/expensive

more than 500 optical components

5 racks

Ultracold atom experiments are hard/expensive

two optical tables

Ultracold atom experiments are hard/expensive

Thomas Young (1801)

Thomas Young (1801)

to convince the audience used water for presentation

	đ		-	
j.		1	6	
	1	d'		
		V		1
		Ì	y.	3.11
		fl -		

Thomas Young (1801)

	water wave	light wave
λ	human scale (~cm)	sub micron
dynamics (frequency)	human scale (~20 Hz)	~500 THz
coherence	easy to observe	hard to observe (sun or candle)

in order to explain **wave mechanics of light** you need to understand **light fields (E)** and **human eye**

~10 Hz bandwidth detector

	BEC (100 μK)	atom vapor (300 K)
λ (de Broglie)	~ 20 µm	~ 1 Å
dynamics (speed)	~ 1 mm/s	~100 m/s
coherence	easy to observe	hard to observe

Ultracold atom technology is a awesome tool to study Quantum Phenomena

Ultracold atoms : "quantumness" amplifier

interrogation limited by transient time

interrogation limited by gravity, photon scattering, background gas collision etc.

measurements!

Ultracold atoms: "quantumness" amplifier

short interrogation time

ultracold atoms

long interrogation time

How to make Ultracold Atoms

First, laser cooling

Making a BEC

Making a BEC

1. Making BECs

1. Making BECs

Alkali Atoms

Alkaline-Earth-Metal-like Atoms

Rb, K

Yb

Applying light to atoms a little bit of math...

Rabi Frequency $\omega_{ m R} \equiv \vec{E}_0 \cdot \vec{\mu}_{ge} / \hbar_{ge}$

Transform using operator $\hat{T}(\omega) \equiv |g\rangle \langle g| + e^{i\omega t} |e\rangle \langle e|$ via $\hat{H}'(t) = \hat{T}(t)\hat{H}(t)\hat{T}^{\dagger}(t) + i\hbar \frac{dT}{dt}\hat{T}^{\dagger}(t)$

$$\hat{H} = \frac{(\hat{\vec{p}}_{\rm CM})^2}{2M} + \frac{\hbar\omega_{\rm R}}{2} e^{i\vec{k}_{\rm rec}\cdot\hat{\vec{x}}_{\rm CM}} e^{-i\delta t} \left|e\right\rangle \left\langle g\right| + \frac{\hbar\omega_{\rm R}^*}{2} e^{-i\vec{k}_{\rm rec}\cdot\hat{\vec{x}}_{\rm CM}} e^{i\delta t} \left|g\right\rangle \left\langle e\right|$$

~10¹⁰ smaller than $\hbar\omega_0$ for ultracold atoms

2nd order perturbation

$$4\delta$$
 4δ

 $\hat{U} = \hbar \frac{|\omega_{\rm R}|^2}{|a\rangle} |a\rangle \langle a|$

AC stark shift

Diffraction by counter propagating beams

Schrodinger equation in the regime $\delta \gg \omega_{\rm R} \gg \omega_{\rm rec}$

$$i\hbar\frac{\partial\psi}{\partial t} = \hat{U}(x)\psi \qquad \qquad \hat{U} = \hbar\frac{|\omega_{\rm R}|^2}{4\delta}|g\rangle\langle g|$$

for counter propagating fields $E_0 \hat{z} (e^{-ikx} + e^{ikx})$

$$i\hbar \frac{\partial \psi}{\partial t} = \hbar \omega_{\rm R}^{(2)}(t) \cos(2kx)$$

$$\psi(x,t) = \exp\left[i\left(\int_{0}^{t} dt' \,\omega_{\rm R}^{(2)}(t')\right) \cos(2kx)\right] \psi(x,0)$$

$$= \sum_{n=-\infty}^{\infty} i^{n} J_{n}(\theta) e^{i(2nk)x}$$
Photon recoil by multiples of $2\hbar k$

Bessel Function of 1st kind

we actually have hyperfine magnetic sub level structure and polarization of light

different internal states

- 1. magnetic trap can be on or off during light pulse
- 2. we can apply one or many **light pulses**

we are taking image after atoms are dropped for "long time" => snap shot of **momentum**

BEC

stitching of many experiments increasing **diffraction beam intensity**

BEC

$$\hat{U} = \hbar \frac{|\omega_{\rm R}|^2}{4\delta} \left| g \right\rangle \left\langle g \right|$$

2-photon transition

misalignment with k-vector along horizontal direction

increasing **pulse area**

measure magnetic trap oscillation frequency

Kapitza-Dirac Interferometer

interference related to relative speed of interfering BECs

Calculation solving for Schrodinger equation of motion

BEC

no magnetic trap

1

time [us]

only calculation for now...

calculation for asymmetric pulse sequence interferometer

lattice velocity

Phonon redistribution via squeezed light photon pair

Phonon redistribution via squeezed light photon pair

Quantum Simulators

Thomas Young (1801)

to convince the audience used water for presentation

Feynmann 'simulating physics with computers'

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

Yb Quantum Gas Microscope

Greiner group

Kondo Lattice Model

Kondo Lattice Model

Thank you!

looking for 포닥 & 정규직

