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Abstract
We have studied the Kondo quantum dot coupled to two superconducting leads and investigated
the subgap Andreev states using the NRG method. Contrary to the recent NCA results (Clerk
and Ambegaokar 2000 Phys. Rev. B 61 9109; Sellier et al 2005 Phys. Rev. B 72 174502), we
observe Andreev states both below and above the Fermi level.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

When a localized spin (in an impurity or a quantum dot) is
coupled to BCS-type s-wave superconductors [1], two strong
correlation effects compete with each other. On the one hand,
the superconductivity tends to keep the conduction electrons
in singlet pairs [1], leaving the local spin unscreened. The
spin state of the total wavefunction is thus a doublet. On the
other hand, the Kondo effect tends to screen the local spin
with the spins of the quasi-particles in the superconductors
at the expense of the quasi-particle excitation energies. The
total spin state is then a singlet [2]. This competition gives
rise to a quantum phase transition from the doublet to singlet
state, and the transport properties change dramatically across
this transition [3, 4]. For example, as demonstrated directly
in a recent experiment [5], the Josephson current through
a quantum dot coupled to two superconducting leads has a
π -shift in its current–phase relation (a so-called π -junction
behavior) for the doublet state, while its current–phase relation
is similar to the usual one (a 0-junction behavior) for the singlet
state [6–13]. For this reason, the doublet–singlet transition is
also called the 0–π transition.

Previous studies of the transition between the doublet and
singlet state all focused on the current–phase relation IS(φ)

of the Josephson current. However, there are other non-
trivial issues to be addressed for a deeper understanding of
the doublet–singlet transition in such a system, i.e. about the
Andreev bound states: (1) how many subgap Andreev states
are there and (2) are the subgap Andreev states true bound
states or quasi-bound states with finite level broadening?

Using the non-crossing approximation (NCA), Clerk and
Ambegaokar [8] investigated the close relation between the 0–
π transition in IS(φ) and the Andreev states. They found that
there is only one subgap Andreev state and that the Andreev
state is located below (above) the Fermi energy EF in the
doublet (singlet) state. They provided an intuitively appealing
interpretation that, in the doublet state, the impurity level well
below EF is singly occupied and due to the strong on-site
interaction energy U only hole-like excitations are allowed;
and that in the singlet state, due to a small probability of
finding the impurity empty, only electron-like excitations are
allowed. This result was supported further by a more elaborate
NCA method by Sellier et al [13]. As stressed by Clerk and
Ambegaokar [8], this observation has a strong contrast with the
non-interacting case, where bound states always occur in pairs
(below and above EF) [14, 15]. Moreover, NCA predicted that
the Andreev state has a finite broadening.

In contrast, the Hartree–Fock approximation (HFA)
[16] predicts two Andreev states, below and above EF

in the Kondo regime. This was in agreement with the
numerical renormalization group (NRG) calculations by [17],
who studied the Andreev states as a function of the
impurity level position. Slave-boson mean-field approximation
(SBMFA) [18] also predicts both electron-like (above EF) and
hole-like (below EF) Andreev states. Further, they both predict
infinitely sharp Andreev states. However, HFA and SBMFA
are effectively non-interacting theories and may not be a strong
argument against the NCA results. A perturbative approach
beyond HFA predicted both Andreev states [19]. In a previous
work [9], we also observed both Andreev states in the NRG

0953-8984/08/415225+06$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/41/415225
mailto:choims@korea.ac.kr
http://stacks.iop.org/JPhysCM/20/415225


J. Phys.: Condens. Matter 20 (2008) 415225 J S Lim and M-S Choi

result. However, the model in these works had the particle–
hole symmetry, and cannot rule out the NCA results either.

As shown above, despite its importance, the nature of
the subgap Andreev states has remained controversial among
different theoretical methods. In this work, we report a
systematic study of the issues using the NRG method. Contrary
to the NCA results, we find both electron-like and hole-
like Andreev states (section 2), except in the region deep
inside the doublet phase, where the superconducting gap is
even bigger than the hybridization and which is not relevant
near the 0–π transition. We provide supporting arguments
based on the variational wavefunctions (section 3) suggested
by Rozhkov and Arovas [7] and on an effective Fermi-liquid
model (section 4). Our NRG results also strongly suggest
that the Andreev states are true bound states with vanishing
broadening (section 5), another difference from the NCA
results.

The subgap Andreev bound states are important from an
experimental point of view as well because they are directly
related to the transport properties of the superconductor–
quantum dot–superconductor systems as in the recent
experiment [20–23]. Recent developments in mesoscopic
transport experiments may allow direct measurement of these
Andreev states through tunneling spectroscopy. So far, the
NCA/SNCA and the NRG method are the only methods that
can treat rather systematically the many-body correlations of
the Anderson-type impurity coupled to superconductors. The
discrepancy between the two methods may motivate further
theoretical efforts for better understanding of the many-body
states of the system.

2. The NRG results

We consider a quantum dot (or magnetic impurity) coupled
to two superconducting leads. The Hamiltonian H = HC +
HD + HT consists of three parts: HC describes two, left
(L) and right (R), BCS-like s-wave superconductors with the
superconducting gap �L(R) and bandwidth D:

HC =
∑

�=L ,R

[
∑

kσ

ξ�kc†
�kσ c�kσ −

(
��c†

�k↑c�k̄↓ + h.c.
)]

(1)

where we have used the shorthand notation k̄ ≡ −k. We
assume identical superconductors, ξLk = ξRk = ξk and
�L = �∗

R = �e+iφ/2 where φ is the phase difference between
the two superconductors. HD describes an Anderson-type
localized level in the quantum dot:

HD =
∑

σ

εdd†
σ dσ + Un↑n↓ (2)

with nσ = d†
σ dσ . εd is the single-particle energy of the level

and U is the on-site interaction. Here we consider the particle–
hole asymmetric case (εd �= −U/2). To compare our results
directly with the NCA results, we will take U = ∞, preventing
double occupancy. Finally, HT is responsible for the tunneling
of electrons between the quantum dot and the superconductors:

HT =
∑

�kσ

(
V�kc†

�kσ dσ + h.c.
)

. (3)

For simplicity we will assume the symmetric junctions with
tunneling elements insensitive to the energy, VLk = VRk = V .
The broadening of the level is given by 	 = πρL(EF)|VL |2 +
πρR(EF)|VR|2 = 2πρ(EF)|V |2. For the calculation, we
followed the standard NRG method [24–28] extended to
superconducting leads [17, 29, 30].

There are two competing energy scales in the system. The
superconductivity is naturally governed by the gap �. The
Kondo effect is characterized by the Kondo temperature TK,
given by [9, 11, 31, 32]

TK =
√

	W0

2
exp

[πεd

2	

(
1 + εd

U

)]
(4)

where W0 ≡ min{D, U}. For TK � �, the ground state is
expected to be a singlet and the Josephson current is governed
by the Kondo physics. In the opposite limit TK 	 �, the
ground state is a doublet and the transport can be understood
perturbatively in the spirit of the Coulomb blockade (CB)
effect [4, 33]. The transition happens at TK ∼ �. See figure 3.

Figure 1 summarizes the results. Figure 1(a) shows the
positions, Ee and Eh, of the subgap Andreev states for U = ∞
and φ = 0. We observe two Andreev states, below and above
EF, are observed in a wide range of �/TK (in particular on
both sides of the transition point �c/TK ∼ 1). More important
are figures 1(b) and (c), the spectral weights Ae (Ah) of the
electron-like (hole-like) Andreev states, defined by

G R
dd(E) ≈ A p

E − E p + i0+ (5)

near E � E p (p = e, h). Except for very large � (� �
	), the spectral weights of both Ee and Eh are the same in
order of magnitude. These observations are consistent with
the behavior of the occupation of the dot level shown in
figure 1(d). Unlike the intuitive interpretation by Clerk and
Ambegaokar [8], the occupation does not change much across
the transition point, although there is a small jump (emphasized
in the blue circle in figure 1(d)). The results in figure 1 remain
qualitatively the same for finite U ; an example is shown in
the inset of figure 1(c). Finite phase difference (not shown in
the figure) does not make any qualitative change (about the
existence of the Andreev states both above and below EF),
either.

3. Variational theory

The main features of the results presented above can
be understood qualitatively in terms of the variational
wavefunctions [7]. For the singlet state in the U = ∞ limit
we take the trial function of the form

|S〉 =
{
A + 1√

2

∑

q∈L ,R

Bq(γ
†
q↑d†

↓ − γ
†
q↓d†

↑)

+
∑

qq ′
Cqq ′γ

†
q↑γ

†
q ′↓

}
|0〉 (6)
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Figure 1. The NRG results on the Andreev states. The energies (a) and the corresponding spectral weights (b) of the subgap Andreev states
for the U = ∞ Anderson model. (c) The ratio Ae/Ah of the spectral weights of the Andreev states. Inset: Ae/Ah as a function of −U/2εd .
(d) Average occupation of the quantum dot level. εd = −0.1D, U = ∞, 	 = 0.02D (TK ≈ 3.88 × 10−5).

with Cqq ′ = Cq ′q . For the doublet state we take

|D↑〉 =
{
Ãd†

↑ +
∑

q

B̃qγ
†
q↑ +

∑

qq ′
C̃qq ′γ †

q↑γ
†
q ′↓d†

↑

− 1√
3

∑

qq ′
D̃qq ′γ

†
q↑

(
γ

†
q ′↑d↓ − γ

†
q ′↓d↑

)}
|0〉 (7)

with C̃qq ′ = C̃q ′q and D̃qq ′ = −Dq ′q , and analogously for |D↓〉.
In equations (6) and (7), we have used the collective index
q ≡ (�, k) to simplify the expressions. The quasi-particle
operators γ�kσ and γ

†
�kσ in equations (6) and (7) are related to

the bare electron operators c�kσ and c†
�kσ in superconductors by

a unitary transform:

[
γ�k↑
γ

†
�k̄↓

]
=

[
u∗

�k −v∗
�k

v�k u�k

] [
c�k↑
c†
�k̄↓

]
, (8)

where u�k and v�k are coherence factors of the quasi-particle
excitations with energies

E�k =
√

ξ 2
�k + |��|2, (9)

and satisfy the Bogoliubov–de Gennes equation [1]:

[
ξ�k ��

�∗
� −ξ�k

] [
u�k

v�k

]
= E�k

[
u�k

v�k

]
. (10)

Following the variational principle, one can determine the
coefficients A, B, and C in the trial wavefunction (6) by

minimizing the singlet-state energy:

E = 〈S|H |S〉
〈S|S〉 (11)

and the coefficients Ã, B̃, C̃ and D̃ in the trial wavefunction (7)
by minimizing the doublet-state energy:

Ẽ = 〈Dσ |H |Dσ 〉
〈Dσ |Dσ 〉 . (12)

More explicitly, upon variation of the singlet energy E in
equation (11) with respect to the coefficients A, B and C one
obtains the variational equations:

A =
√

2V

E

∑

q

v∗
qBq, (13)

(E − εd − Eq)Bq = √
2V

∑

q ′
Cqq ′ u∗

q ′ +
√

2VAvq, (14)

and

Cqq ′ = V√
2

Bq uq ′ + Bq ′ uq

E − (Eq + Eq ′)
. (15)

Similarly, the variation of Ẽ in equation (12) with respect to
Ã, B̃, C̃ and D̃ gives another set of variational equations for the
doublet state:

Ã = V

Ẽ − εd

∑

q

u∗
q B̃q , (16)

(Ẽ − Eq)B̃q = V Ãuq − V
∑

q ′
(C̃qq ′ + √

3D̃qq ′)v∗
q ′ , (17)
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Figure 2. Results from the variational calculations. Plotted is the
ratio Ae/Ah of the spectral weights as a function of −εd/	 for
various values of 	. �/D = 0.1.

C̃qq ′ = − V

2

B̃qvq ′ + B̃q ′vq

Ẽ − εd − (Eq + Eq ′)
, (18)

and

D̃qq ′ = −
√

3V

2

B̃qvq ′ − B̃q ′vq

Ẽ − εd − (Eq + Eq ′)
. (19)

The variational equations (13)–(19) are solved numerically. To
this end, one has first to discretize the conduction bands of
the superconductors. Since the quasi-particle density of states
in superconductors has a square-root singularity (∼1/

√
Eq ;

see equation (9)), the discretization spacing δE should be
sufficiently smaller than �. Moreover, in order to investigate
the Kondo correlations one has to span in equations (13)–(19)
energies well above the Kondo temperature TK as well as the
gap energy �. It means that, for TK � �, a huge number of
energy slices are required to solve the variational problem. For
this reason, the variational method is practically limited to the
regime where TK is not too large compared with �.

The local spectral density A(E) = A>(E) + A<(E) of
quasi-particle excitations on the quantum dot is given in the
Lehmann representation (see [34] and equation (5)) as

A>(E) =
∑

σ

∑

n

∣∣〈n|d†
σ |G〉∣∣2

δ(E − En) (20)

and
A<(E) =

∑

σ

∑

n

|〈n|dσ |G〉|2 δ(E + En) (21)

where |G〉 is the ground state and |n〉 are single-particle or
single-hole excited states with energies En. A>(E) describes
electron-like excitations while A<(E) describes hole-like
excitations. From the form of the trial wavefunctions in
equations (6) and (7), it is clear that the spectral weight of the
hole-like Andreev state in the singlet phase depends on how
much the quantum dot is occupied (Bq) in |S〉 and how much
the quantum dot is empty (B̃q ) in |Dσ 〉; namely, on the matrix
element

〈Dσ |dσ̄ |S〉 = − 1√
2

∑

q

B̃∗
qBq (22)

up to normalization constant
√〈S|S〉〈Dσ |Dσ 〉. Here σ̄ denotes

the spin direction opposite to σ . The weight of the electron-like

Figure 3. Phase diagram of the Anderson impurity model with
superconducting leads (for φ = 0) deduced from the NRG results.
The phase boundaries for the infinite-U model (red solid line with
circles) and for the particle–hole symmetric model (black dashed line
with squares), respectively, have been calculated by the NRG
method.

Andreev state in the doublet phase also depends on 〈Dσ |dσ̄ |S〉.
Likewise, the weight of the electron-like (hole-like) Andreev
state in the singlet (doublet) phase is determined by the matrix
element

〈Dσ |d†
σ |S〉 = Ã∗ A +

∑

qq ′
C̃∗

qq ′Cqq ′ . (23)

According to the NCA results [8, 13], 〈Dσ |dσ̄ |S〉
(〈Dσ |d†

σ |S〉) should vanish in the singlet (doublet) phase.
However, as shown in figure 2, neither of them vanishes,
and the spectral weights Ae and Ah are similar in order of
magnitude on both sides of the transition point, in agreement
with the NRG results. We must point out that the agreement
between the variational and NRG results is only at a qualitative
level. The ratio Ae/Ah from the variational method is about
five times bigger than the NRG result. However, this is not
surprising because the variational method is limited in the
region where TK is not too large compared with �; see the
discussion below equation (19).

There is another interesting point to be noticed in the
variational wavefunctions in equations (6) and (7). The lowest-
energy solution to the variational equations (13)–(15) for |S〉 is
well separated from the continuum. This is also the case for the
doublet state |Dσ 〉. It suggests that the subgap Andreev state is
a true bound state without broadening. We will come back to
this point in section 5 below.

4. Universality

Since the singlet–doublet transition in the system is a true
quantum phase transition, the universality is also an important
issue. With � and TK being the only two low-energy scales in
the system, physical quantities should depend only on the ratio
of �/TK but not on the details of the system.

In figure 4, we plotted the normalized spectral weights
Ae(h)/� as a function of �/TK for various values of εd/	.
We observe that the curves of Ae(h) overlap each other almost
completely in the Kondo regime (� 	 TK) except for
cases close to the mixed-valence regime (|εd | � 	). The
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Figure 4. The NRG results of the spectral weights Ae (Ah) of the
electron-like (hole-like) Andreev state as a function of �/TK at
εd = φ = 0 for different values of 	. Inset: the same in a wider
range of �/TK including the doublet phase.

deviation from the universal behavior in the mixed-valence
regime (−εd � 	) is not surprising because of strong charge
fluctuations in the regime. This is also indicated in the
phase diagram in figure 3: close to the mixed-valence regime
(−εd/	 � 1), �c/TK becomes larger.

More interestingly, the universal curve in figure 4 can
be fitted to a simple effective non-interacting model. To see
this, let us consider a purely non-interacting localized level
at εd . When it is coupled between two superconductors with
phase difference φ, two Andreev bound states develop on the
localized level, one being electron-like and the other hole-like.
The energies, ±ω0, of the electron-like and hole-like Andreev
bound states are exactly opposite in sign. In other words, they
are located symmetrically above and below the Fermi level of
the superconductors. The value of ω0 is determined by the zero
of the function [14, 15]:

K (z) = z
(√

1 − z2 + 	
)

−
√

ε2
d(1 − z2) + 	2 cos2(φ/2)

(24)
where 	 is the broadening of the level due to the coupling to the
superconductors. The spectral weights of the Andreev states at
energies ±ω0 are respectively given by

Ae(h)

�
= (1 − ω2

0)

K ′(ω0)K (ω0)

⎡

⎣z

⎛

⎝1 + 	√
1 − ω2

0

⎞

⎠ ± εd

⎤

⎦ , (25)

where K ′(z) = dK/dz. At the resonance (εd = 0) and in the
limit 	 � �, the expression is reduced to

Ae(h)

�
≈ 2

�2

	2
. (26)

Now let us try to construct an effective model for the
Kondo resonance in the deep Kondo regime. The Kondo
correlated state behaves like a Fermi liquid. Naturally, if
the reservoirs are normal metal, the Kondo resonance can be
regarded in effect as a non-interacting resonance level at the

Figure 5. Raw data of the spectral weights of the discrete energy
levels from the NRG calculation (a) at T = 0.1� and (b) at T = 0.5.

Fermi energy EF. In other words, many physical properties are
described pretty well by the effective impurity Greens function

Gd(z) = TK/	

z + iTK
(27)

with TK playing the role of the level broadening. In the
previous work [9], where the particle–hole symmetry was
assumed, it was demonstrated that this may also remain to hold
for superconducting reservoirs. To test this idea, let us consider
an effective impurity model, where the impurity Greens
function is given by equation (27) and the pairing potential
[see equation (1)] is turned on the reservoir. Following the
same lines leading to equation (25) in the case of a purely non-
interacting resonance level, one can expect the spectral weights
of the Kondo correlated Andreev states:

Ae(h)

�
≈ 2

�2

T 2
K

, (28)

which is the same as equation (26) except that 	 has been
replaced by TK. Indeed, the NRG data of the spectral weights
in figure 4 fit very well to

Ae(h)

�
∼ �2

T 2
K

(29)

which is consistent with equation (28).

5. True bound state

Finally, we address whether the subgap Andreev state is a true
bound state. Clerk and Ambegaokar [8] and Sellier et al [13]
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found finite broadening of the Andreev states. This may come
from the finite-temperature effects. NCA cannot goes down
to temperatures much lower than the Kondo temperature, and
they worked at rather high temperatures [8, 13]. The spectrum
from the NRG calculation is inherently discrete [35] and it is
not easy to make a definite conclusion. However, as shown
in figure 5, the subgap states are well separated from the
continuum parts up to temperatures as high as the energy of
the subgap states. At temperatures higher than the energy of
the Andreev states, it is accompanied by other small spikes. It
suggests that the subgap Andreev states are true bound states
and that the finite broadening observed in the NCA results may
be a finite-temperature effect.

6. Conclusion

We have studied the Kondo quantum dot coupled to two
superconducting leads and investigated the subgap Andreev
states using the NRG method. Contrary to the recent NCA
results [8, 13], we observe Andreev states both below and
above the Fermi level.
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