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Probing Kondo spin fluctuations with scanning tunneling microscopy and electron spin resonance
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We theoretically analyze a state-of-the-art experimental method based on a combination of electron spin
resonance and scanning tunneling microscopy (ESR-STM), to directly probe the spin fluctuations in the Kondo
effect. The Kondo impurity is exchange coupled to the probe spin, and the ESR-STM setup detects the small
level shifts in the probe spin induced by the spin fluctuations of the Kondo impurity. We use the open quantum
system approach by regarding the probe spin as the “system” and the Kondo impurity spin as the fluctuating
“bath” to evaluate the resonance line shifts in terms of the dynamic spin susceptibility of the Kondo impurity.
We consider various common adatoms on surfaces as possible probe spins and estimate the corresponding level
shifts. It is found that the sensitivity is most pronounced for the probe spins with transverse magnetic anisotropy.
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I. INTRODUCTION

Ever since the first theoretical explanation, dating back
more than 50 years [1], the Kondo effect has attracted great
interest not only in condensed matter physics but also in other
areas of physics [2–7]. It serves as a physical paradigm to
understand other strong correlation effects and helped the
developments of powerful theoretical methods [8–12]. Recent
advances in nanotechnology, allowing the control of elec-
tronic states down to a single magnetic impurity, have brought
renewed interest in this topic [13–15], and more exotic Kondo
physics has been designed and explored [16–18].

Despite this progress, the answer to some of the most fun-
damental questions, such as the size of the Kondo screening
cloud [19–22] (which is an essential feature of the Kondo
effect), still remain elusive due to the lack of direct ex-
perimental probes. One of the measurements closest to a
direct assessment of the Kondo screening cloud considers the
compressibility (i.e., the charge susceptibility) of the Kondo
impurity [23]. By measuring the suppression of the compress-
ibility in the presence of a Kondo-enhanced transport current,
the authors of Ref. [23] have demonstrated that the Kondo
effect is due to spin fluctuations without charge fluctuations.
However, the experiment probed only the charge sector but
not directly the spin fluctuations themselves.

Here, we propose a method to directly probe the spin
fluctuations of the Kondo effect by taking advantage of the
excellent spatial (Å) and energy (μeV) resolution [24–27]
of scanning tunneling microscopy (STM) and spectroscopy
(STS). Before discussing our scheme, we note how STM
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and STS have allowed many remarkable experiments, such
as the observation of charge density oscillations surrounding
a magnetic adatom [28,29], and later of the Kondo resonance
in Ce or Co adatoms [25,30]. Varying the lateral tip-adatom
distance has revealed links between the asymmetry of the
Kondo resonance and different types of tunneling matrix
elements [25,31]. The capability of manipulating adatoms,
vividly illustrated by the quantum mirage [32,33], has allowed
controllable studies on the effect of interaction between two
nearby Kondo impurities [34,35], such as in the two-impurity
Kondo model [36,37]. Equipped further with spin-polarized
tips, STM can also investigate magnetic properties such as
magnetic anisotropy [38,39] and magnetic exchange coupling
[35] at the atomic level.

The setup we consider here is based on a combination of
electron spin resonance and scanning tunneling microscopy
(ESR-STM; see Fig. 1) [40–42]. The key idea is to detect the
small level shifts in the probe spin due to the spin fluctuations
of the Kondo impurity. In essence, the level shifts are similar
to the Lamb shift of atomic levels due to the quantum fluctu-
ations of the electromagnetic field [43,44]. In fact, the charge
compressibility measurement [23] was along the same prin-
ciple, by detecting the shift of the cavity resonance frequency
due to the charge fluctuations on the quantum dot. In that case,
the bosonic nature (i.e., linear system) of the cavity photons
allows one to estimate the shift by means of the random phase
approximation or similar methods.

In our case, the probe spin is a highly nonlinear system
and the theoretical analysis is more complicated. We express
and estimate the level shifts in terms of the dynamic spin
susceptibility based on the open quantum system approach,
by regarding the probe spin as the “system” and the Kondo
impurity spin as the fluctuating “bath.” Testing various com-
mon adatoms (as the probe spin) on surfaces, we illustrate
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FIG. 1. Schematics of a Kondo impurity (right dashed box) cou-
pled to a probe spin measured by an ESR-STM device (left dashed
box). The Kondo impurity is tunnel-coupled with electrons in the
metal substrate, and can be described by the Anderson model [45].
The probe spin is adsorbed on the top of an insulating layer (yellow),
and modulates the tunneling current through the spin-polarized (SP)
tip under microwave voltage drive Vrf . Upper-right inset: Schematic
plot of the low-energy spectrum of a typical probe spin with S = 2
(e.g., Fe on MgO) from the effective spin Hamiltonian Eq. (2) (see
also Fig. 6 in Appendix C). The transition frequency f0 between
the low-energy states |0〉 and |1〉, modified by the dynamical spin
fluctuations of the Kondo system, is of primary interest in this study.

that the level shifts are within the resolution of ESR-STM.
We find that transverse magnetic anisotropy (in addition to
the common axial one) of the probe spin enhances the level
shifts.

This article is organized as follows: In Sec. II we present
the model of the Kondo impurity and discuss how it is coupled
to, and detected through, the ESR-STM-based probe spin. In
Sec. III we develop the general theory underlying this work.
We derive the shifts in the energy levels of the probe spin,
and connect them to the dynamical spin susceptibility of the
Kondo impurity. Then, those general discussions are applied
in Sec. IV to specific examples from various common impuri-
ties appearing in the literature. Section V concludes the article
with some additional remarks. To more clearly maintain the
major scope of the work, we defer some technical details to
Appendices A, B, and C.

II. SETUP AND MODEL

We propose to utilize the ESR-STM techniques to perform
an accurate spectroscopic analysis of spin fluctuations in the
Kondo effect. Our ESR-STM-based setup is schematically
shown in Fig. 1 and consists of a Kondo impurity magnetically
coupled to a probe spin. It is governed by the Hamiltonian

Ĥ = ĤKondo + Ĥprobe + Ĥexchange, (1)

where the three different terms refer to the system, probe, and
system-probe interaction Hamiltonians, respectively. Ĥexchange

is typically small, and the Kondo impurity can be treated as
providing an effective environment to the probe spin. The fluc-
tuating environment, i.e., the Kondo impurity, induces small
shifts to the energy levels of the probe spin. Such shifts will
then be reflected in the position of ESR lines detected by the

TABLE I. The parameters in the effective spin Hamiltonian for
some reported probe spins. Ds and Es (in units of meV) are the axial
and transverse magnetic anisotropy parameters in Eq. (2). g is the
electron g factor and S is the collective spin angular momentum.
Base A/B indicates the material for the insulating layer (A) and
the metallic STM substrate (B), while the binding site and local
symmetry group (Sym.) of the probe spin are also specified.

Type S Base Site Sym. Ds Es g

Mn [50] 5/2 Cu2N/Cu Cu D2 −0.039 0.007 1.90
Fe [50] 2 Cu2N/Cu Cu D2 −1.55 0.31 2.11
Ce [52] 3/2 Cu2N/Cu Cu D2 −1.3 0.18

Fe [40,51,53] 2 MgO/Ag O C4v −4.7 0 2.6
Co [35,38,54] 3/2 Cu2N/Cu Cu 2.75 0 2.19
Co [55] 3/2 MgO/Ag O C4v 27.5

Ti [56,57] 1/2a MgO/Ag 1.98

aThe Ti probe spin in Refs. [56,57] has spin 1/2 because of a hydro-
gen atom attached to the Ti adatom. It has been pointed out that for
clean Ti on MgO one would have S = 1 [56].

STM tip. The aim of the setup is therefore to indirectly probe
the spin fluctuations of the Kondo system through the dis-
placed ESR resonance line of the probe spin. We will provide
below the theoretical framework to compute such effects.

A. Probe impurity and ESR-STM detection

The spin of the probe impurity (hereafter simply called
the probe spin) is coupled to the metal substrate through
an insulating layer as shown in Fig. 1. (While the metallic
substrate is necessary for the STM current, the insulating layer
prevents the probe spin from being directly coupled to the
metallic substrate, which would screen the probe spin.) It is
addressed with an STM device. To a good approximation,
several relevant magnetic impurities can be described by the
effective spin Hamiltonian [35,46–50]:

Ĥprobe = DsŜ
z
pŜz

p + Es
(
Ŝx

pŜx
p − Ŝy

pŜy
p

)+ gμBB · Ŝp, (2)

where Ŝμ
p is the μth component of the probe-spin angular mo-

mentum (μ = x, y, z), Ds and Es are the axial and transverse
anisotropy parameters, respectively, B is the magnetic field,
and g is the g factor of the probe spin. Typical values of the
parameters from the literature are listed in Table I. Physi-
cally, the Ds and Es terms arise as second-order corrections
from the spin-orbit interaction, in the presence of crystal-field
anisotropy induced by the insulating substrate [40,51].

The spin-dependent level structure of the probe spin is
detected accurately by the ESR-STM measurement with a
spin-polarized tip. Note that the same setup can actively ma-
nipulate and detect the spin state of the probe spin as well.
All these are achieved by feeding a microwave drive Vrf of
frequency f on the bias voltage of the spin-polarized tip,
which induces a time-dependent change to the local electro-
static environment of the probe spin. The drive induces spin
transitions via the spin-orbit coupling. We will be interested
below in the transition between the two lowest levels of the
probe spin, which we denote as |0〉 (the ground state) and |1〉
(the first excited state). Since typically Es � Ds (see Table I),
at small magnetic field these two states form a doublet. When
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Ds < 0,

|0〉, |1〉 � |S,±S〉, (3)

while for Ds > 0 and S is half-integer (like in the case of
Co) the low-energy states are |0〉, |1〉 � |S,±1/2〉. Because
the probe spin states involved by the ESR drive differ in their
magnetic moments, the spin transition will cause a change
in tunneling current I ( f ) through the probe spin from the
spin-polarized tip to the substrate. Technical details of the
tunneling current I ( f ) are explained in Appendix A, following
previous literature [40,58,59]. The signal is approximately
given by

I ( f ) � I0 + Ip

[
�2T1/T2

4π2( f − f0)2 + �2T1/T2 + 1/T 2
2

]
, (4)

where � is the Rabi frequency of the drive and f0 := (E1 −
E0)/2π h̄ is the ESR transition frequency. 1/T1 and 1/T2 are,
respectively, the relaxation and dephasing rates of the probe
spin. The explicit expressions for the background (I0) and
saturation (Ip) currents are described in Appendix A [see
Eqs. (A13)], and include contributions from both elastic and
inelastic tunneling [58,59].

As we explain in detail in Appendix A, the tunneling cur-
rent Eq. (4) is derived under the assumption of a small bias
voltage between the spin-polarized tip and the substrate, i.e.,
the bias is much smaller than Ds. Thus, only the lowest states
|0〉, |1〉 of the probe spin need to be considered. Under this
two-level approximation, it is known that the change in tun-
neling current I ( f ) induced by the drive is simply proportional
to the steady-state population P1( f ) of the upper level [40].
When the incoherent excitation rate �0→1 from the ground
state |0〉 to the excited state |1〉 is negligible, a simplified
expression for P1( f ) can be obtained by solving the Bloch
equations [40], and is proportional to the square brackets of
Eq. (4). As a result, the ESR signal I ( f ) has a Lorentzian
line shape centered around the 0-1 transition frequency, which
allows one to map out the ESR spectrum by sweeping the
drive frequency f .

B. Kondo impurity

The Kondo impurity is shown in the right dashed box of
Fig. 1. Unlike the probe spin (coupled to an insulating host),
it is strongly coupled to the metallic substrate, which justifies
neglecting anisotropy effects (an anisotropy in the Kondo
coupling is irrelevant in the renormalization group sense as the
strong-coupling fixed point is isotropic). One could describe
it with a standard version of the Anderson model [45]:

ĤKondo =
(∑

σ

εσ n̂d,σ + Un̂d,↑n̂d,↓

)
+
∑
k,σ

εkĉ†
k,σ ĉk,σ

+
∑
k,σ

Vk(d̂†
σ ĉk,σ + ĉ†

k,σ d̂σ ), (5)

where the first term (in the brackets) refers to the Kondo
impurity, the second to the substrate, and the third (second
line) to the electron tunneling between the Kondo impurity
and the substrate. In Eq. (5), d̂σ and ĉk,σ are annihilation
operators for the impurity and substrate, respectively, and
n̂d,σ = d̂†

σ d̂σ gives the occupation of the Kondo impurity level

by an electron with spin σ = ↑,↓. Here we assume that
the Kondo impurity has spin SK = 1/2. For larger spins, the
Kondo effects are even richer. However, the dynamic spin
fluctuations due to such exotic Kondo effects can also be
detected in the same method, and the resulting frequency shift
can be estimated in an essentially similar method described
below.

A crucial quantity characterizing magnetic fluctuations of
the Kondo impurity and hence affecting the ESR-STM signal,
is the dynamical spin susceptibility [60]:

ih̄χμ(ω) = −(gμB)2
∫ ∞

0
dt eiωt

〈[
Ŝμ

K (t ), Ŝμ
K (0)

]〉
, (6)

where the spin angular momentum operator of the Kondo
impurity is given by Ŝμ

K := 1
2

∑
s,s′ d̂†

s σ
μ

s,s′ d̂s′ , with σμ the

μth Pauli matrix, and Ŝμ
K (t ) = eiĤKondot/h̄Ŝμ

K e−iĤKondot/h̄. While
χμ(ω) is highly nontrivial to compute theoretically and dif-
ficult to access experimentally, the Bethe ansatz method
provides one relevant result [61]:

χμ(0) = (gμB)2

4πkBTK
, (7)

where g is the g factor, μB is the Bohr magneton, and TK is the
Kondo temperature [62]. The full dynamic spin susceptibility
could be obtained, e.g., through the numerical renormalization
group method [63]. A qualitative feature of χμ(ω) is the
presence of a peak at ω = 0 of width kBTK/h̄, which develops
when the temperature of the Kondo system is lowered to
T � TK . Therefore, for qualitative estimations at low tem-
peratures and |ω| � kBTK/h̄, one may resort to the following
approximate form:

χμ(ω) ≈ χμ(0)
ikBTK

h̄ω + ikBTK
, (8)

where Reχμ(ω) gives a Lorentzian peak and Imχμ(ω) follows
from the the Kramers-Kronig relations. As we will see, it is
Imχμ(ω) which determines the shift in ESR frequencies of
the probe spin.

Importantly, the sole characteristic energy scale of the
Kondo impurity, i.e., the Kondo temperature TK , is large in
our problem. For example, it is known that the Kondo tem-
peratures of a Co impurity can reach nearly 100 K ∼ 9 meV
when deposited without an insulating layer on Ag(111) [64].
Among Kondo systems with an insulating layer, despite TK

may significantly degrade as a result of partial decoupling to
the metallic surface, moderate values of ∼15 K have been
reported for Ce clusters deposited on a monolayer of Cu2N
on top of Cu(100) [52].

One needs to apply an external magnetic field for the
ESR-STM technique, but we work here in a regime where
the Zeeman splitting of the Kondo spin is much smaller than
kBTK . As a reference, typical values of the magnetic field B
applied in ESR-STM experiments are around 5 T [40,41],
giving gμBB/kB ∼ 7 K. If for a given system the Kondo
temperature is not sufficiently large, and working at smaller
values of B is not an option, another interesting possibility
is to modify the local magnetic environment by introducing
additional magnetic impurities. It was demonstrated that the
effect of nearby magnetic impurities can offset the external
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magnetic field acting on the Kondo spin, and a single Kondo
peak can be observed at a finite value of B [35].

C. Interaction between impurity spins

To probe the spin fluctuations of the Kondo impurity, a siz-
able coupling is necessary between the probe impurity (spin)
and the Kondo impurity, which could be mediated through the
substrate or come from the direct dipole-dipole coupling. The
corresponding Hamiltonian is written as

Ĥexchange =
∑

μ∈{x,y,z}
JμŜμ

p Ŝμ
K , (9)

which describes either isotropic (Jμ = J) or XXZ (Jz = Jx =
Jy) interactions. Depending on the system and underlying
mechanism, previously reported coupling strengths vary in a
wide range. Closely spaced impurities can exhibit strong mag-
netic interactions, dominated by direct exchange, which are
able to destroy or strongly modify the Kondo effect [35,65].
For our purposes we will avoid this regime by requiring
Jμ � kBTK . Dipolar couplings between two adatoms detected
by ESR-STM spectroscopy lie in a suitable range, with re-
ported ESR frequency shifts of 0.02–3 GHz [41] (translating
to Jμ ∼ 0.1–10 μeV). The ESR shifts induced by such dipolar
interaction are thus negligibly smaller than the bare transition
frequency, f0 � 23 GHz in Ref. [41].

This parameter regime allows us to treat the Kondo impu-
rity as an additional bath for the probe spin. Since a typical
Kondo temperature corresponds to spin flips on a timescale
of terahertz, while typical ESR transition frequencies are a
few tens of gigahertz [40,41,56], the separation of timescales
implies that the probe spin cannot resolve individual spin
flips of the Kondo impurity, but is only influenced by the
average effect of spin fluctuations. The scenario is similar to
the open-system dynamics in the presence of a Markovian
bath, where only the fast varying bath correlation functions
enter the equation of motion [66]. An explicit application of
this approach to our system is pursued in the next section.

It is optimal to put the Kondo impurity directly on top
of the metallic substrate for stronger coupling [67], whereas
the probe spin is better absorbed on a thin insulating layer
for sharper ESR resonance lines (to prevent it from being
screened by the Kondo effect). On the other hand, the Kondo
and probe spins should be close enough to have a substantial
exchange coupling Jμ. One way to achieve these goals is
to employ insulating nanoislands, which have been realized
with Al2O3, Cu2N, or MgO [50,51,68]. Positioning an adatom
at the edge of an insulating nanoisland, where a significant
Kondo effect appears, is another way and has also been real-
ized in experiments [39].

III. EFFECTIVE ENVIRONMENT OF THE PROBE SPIN

The timescale separation and weak coupling between the
probe spin and Kondo impurity justify treating the Kondo
impurity as an effective bath. Following standard procedures
[66], the master equation for the reduced density operator

ρ̂p(t ) ≡ TrKondo{ρ̂(t )} of the probe spin can be derived as.

d

dt
ρ̂ (I)

p (t ) = − 1

h̄2

∫ ∞

0
dτ Tr

Kondo

{[
Ĥ (I)

exchange(t ),

[
Ĥ (I)

exchange(t − τ ), ρ̂ (I)
p (t ) ⊗ ρ̂Kondo

]]}
, (10)

where the superscript I indicates that the operators are defined
under the interaction picture with respect to Ĥprobe + ĤKondo,
and the thermal equilibrium ρ̂Kondo ∝ exp[−βĤKondo] is as-
sumed for the Kondo impurity. The explicit evaluation of
Eq. (10) is discussed in Appendix B, with the final form
including two effects:

d

dt
ρ̂ (I)

p (t ) = 1

ih̄

[
ĤLamb, ρ̂

(I)
p (t )

]+ R
[
ρ̂ (I)

p (t )
]
. (11)

The dissipative term R[ρ̂ (I)
p ] is given by Eq. (B2) and de-

scribes the relaxation and dephasing induced by the Kondo
system. It is expressed and estimated more explicitly in Ap-
pendix B. In principle, the dissipative term leads to a finite
resonance linewidth in the ESR-STM experiment. However,
in reality the ESR linewidth is determined by instrumental
factors such as the strong driving rf field and the tip-sample
vibrations [40]. For this reason, we do not further discuss the
dissipative term in this work and focus on the coherent (Lamb
shift) term. The shift in the probe-spin energy levels Em is

ĤLamb =
∑

m

δEm|m〉〈m|, (12)

where |m〉 is the eigenstate of Ĥprobe with energy Em. By
explicit evaluation (see Appendix B), we obtain

δEm = −
∑

μ

J2
μ

πkBTK

∑
n

∣∣Sμ
nm

∣∣2Wμ(Enm), (13)

where Enm := En − Em and Sμ
mn = 〈m|Ŝμ

p |n〉 is the spin transi-
tion matrix element of the probe spin. The energy weighting
factor Wμ(E ) is given by

Wμ(E ) = Pr
∫ ∞

−∞

dω

π

fB(h̄ω/kBT )Im[χμ(ω)/χμ(0)]

E/h̄ − ω
, (14)

where fB(z) = (ez − 1)−1 and the symbol Pr means the
Cauchy principle value. Note that, in the regime of our inter-
est, the ratio χμ(ω)/χμ(0) is a universal function of h̄ω/kBTK .
From these expressions we see that the energy shifts δEm

depend crucially on two factors: (i) the spin transition ma-
trix elements Sμ

mn and (ii) the dynamical susceptibility χμ(ω),
contained in the weighting factor Wμ.

For concreteness, we consider the Lorentzian approxima-
tion of χμ(ω), Eq. (8), giving

Wμ(E ) = Pr
∫ ∞

−∞

dx

π

[
x fB(x/τ )

1 + x2

]
1

ε − x
, (15)

where τ = T
TK

and ε = E
kBTK

. Figure 2 shows the general be-
haviors of the energy weighting factor Wμ(E ) as a function
of energy for different temperatures. In the zero-temperature
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FIG. 2. Energy weighting function Wμ(E ), defined in Eq. (14),
and evaluated under the Lorentzian approximation. The black curves
are from a numerical evaluation of Eq. (15) while the red dashed
curve is the zero temperature analytical result Eq. (16).

limit we obtain

Wμ(E ) = π/2 + ε ln |ε|
π (1 + ε2)

(τ → 0), (16)

which works well if T/TK � 10−2 (cf. Fig. 2). Another in-
teresting limit is for ε → 0, giving Wμ(E = 0) = 1/2. The
E = 0 result is independent of τ , also seen in Fig. 2.

Finally, the shift in spin transition frequency f0 := (E1 −
E0)/2π h̄, which can be detected using an ESR-STM device,
is obtained as

δ f0 = J2
μ/(2π h̄)

πkBTK

∑
μ,n

[∣∣Sμ
n0

∣∣2Wμ(En0) − ∣∣Sμ
n1

∣∣2Wμ(En1)
]
.

(17)

To analyze the behavior of δ f0, we will carry out in the next
section the numerical evaluations of these expressions for
typical probe spins.

IV. ESR TRANSITION FREQUENCIES

We show in Fig. 3 the frequency shifts obtained for the
probe spins listed in Table I. The shifts have a sensitive depen-
dence on the type of impurity, insulating layer, and substrate,
as well as the anisotropy of the exchange interaction. We gen-
erally find that Mn on Cu2N is the most sensitive probe spin,
while Fe on MgO always yields a very small shift and will be
considered separately below. With this exception, the range of
shift agrees reasonably well with the general scale predicted
by Eq. (17), where the prefactor evaluates to �80 kHz with
Jμ � 1 μeV and kBTK = 1 meV (the parameters assumed
in Fig. 3). In particular, in the isotropic case (Jz = Jx,y) all
the shifts are in the range of 10–25 kHz, with the variation
between different probe spins due to the spin operator matrix
elements and weighting factors appearing in Eq. (17).

While it is immediate to understand how the overall fre-
quency scale is influenced by a change of Jμ and TK , the
effects related to |Sμ

nm|2Wμ(Enm) are much less transparent.
For example, sharp dips are induced at certain values of
the Jz/Jx,y ratio, due to a sign change of δ f0. The precise

FIG. 3. Frequency shifts δ f0 as a function of exchange coupling
anisotropy for probe spins listed in Table I (we use g = 2 if the g
factor is not specified). Other parameters: Bx = 6 T, Bz = 0.2 T, T =
0.5 K, and kBTK = 1 meV. In the left panel Jx,y = 1 μeV and in the
right panel Jz = 1 μeV.

condition for these vanishing shifts, i.e.,
∑

n |Sμ
n1|2Wμ(En1)

equals to
∑

n |Sμ
n0|2Wμ(En0), depends in a nontrivial way on

the magnetic field, exchange coupling, as well as tempera-
ture. It is also interesting to notice that some probe spins (in
particular, Mn and Co) prefer an in-plane exchange coupling
∝ Ŝx

pŜx
K + Ŝy

pŜy
K , which facilitates a larger δ f0, while in other

cases (Fe and Ce on Cu2N) the limit of an Ising interaction
with Jx,y = 0 is most favorable.

We now return to the special case of Fe on MgO which,
despite being one of the commonly employed probe spins in
ESR-STM devices, shows the smallest energy shifts among
those listed in Fig. 3. From the point of view of the spin
Hamiltonian Eq. (2), the smallness of δ f0 is attributed to
the large spin of the impurity, S = 2, and the high symme-
try of the binding site, which does not allow the transverse
anisotropy term (Es = 0). To confirm it, in Appendix C we
consider a more microscopic Hamiltonian, commonly used
in modeling ESR-STM studies [40]. Under the conditions
of large S and uniaxial anisotropy (Es = 0), the unperturbed
Hamiltonian DsŜz

pŜz
p leads to a low-energy doublet |S,±2〉,

for which the direct matrix elements of the spin operators
vanish, i.e., |Sμ

01|2 = 0 in Eq. (17). While the perturbation
δV̂ = −gμBBxŜx

p induced by a transverse field allows tunnel-
ing between the two levels, this can only occur through higher
order processes. The off-diagonal matrix elements |δVS,−S|
between |S,±S〉 had been calculated in the literature, which
in the large S limit reads [69,70]

|δVS,−S| ≈ 2DsS3/2

π1/2

(
egμBBx

4SDs

)2S

, (18)

and decreases rapidly with S, thus leading to small values of
|Sμ

01|2. While this matrix element is small, |Sμ
0n|2 and |Sμ

1n|2
can become sizable when considering the contributions to
Eq. (17) from excited states, i.e., n = 0, 1. However, these
contributions are suppressed by the unfavorable dependence
of the weighting factor by the large transition frequencies
E0n, E1n ∼ Ds.
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FIG. 4. Lower panel: Frequency shift δ f0 as a function of mag-
netic field Bx in the x direction, with Bz = 0.2 T. Parameters Ds =
−0.039 meV, Es = 0.007 meV and g = 1.90 correspond to a Mn
probe spin. We assumed here an isotropic magnetic interaction, Jx =
Jy = Jz = 1 μeV and kBTK = 1 meV. The solid line is computed
for T = 0.5 K, with the red shaded region showing the variation on
δ f0 caused by �T = 0.1 K temperature change. The red dash-dotted
curve is for T = 0. Upper panel: Energy spectrum of the probe spin.

In passing, we note how the other impurity spins listed in
Table I avoid the aforementioned problems of Fe on MgO.
For probe spins at binding sites with low symmetry (described
by the point group D2), the finite value of Es breaks the spin
selection rule and allows relatively large values of |Sμ

01|2. It
mostly results in large shifts for probe spins such as Mn, Fe,
and Ce (see the first three rows in Table I). On the other
hand, although Co are sitting on the binding sites with a high
symmetry (the point group C4v), the positive value of Ds leads
to a low-energy doublet of the type |0〉, |1〉 � |3/2,±1/2〉.
In this case, the spin transition matrix elements are sizable
and lead to relatively large level shifts. Finally, the larger level
shifts predicted in Mn on Cu2N are related to the small values
of Ds, Es � kBTK (see Table I), allowing for considerable
contributions from virtual transitions through some excited
states.

Before concluding this section, we examine in more detail
the frequency shift in the favorable case of a Mn probe spin
on Cu2N. The lower panel of Fig. 4 shows the magnetic field
dependence of δ f0, which has a complicated behavior and sign
change for B � 3 T. A comparison to the low-energy spec-
trum (upper panel) suggests a connection between δ f0 = 0
and level anticrossing in the lower-energy doublet. On the
other hand, the behavior of δ f0 at B � 3 T is dominated by the
Zeeman term, and shows a nearly quadratic increase of |δ f0|

FIG. 5. Orientation dependence of the frequency shift |δ f0| for a
magnetic field with a constant magnitude B = 6 T. θ and φ are the
polar and azimuth angles that specify the direction of B. The color
bar is in units of MHz. Except Bx,y,z, other parameters are the same
as in Fig. 4.

versus Bx. Furthermore, since the energy splitting of the probe
spin depends on the interplay between the Zeeman term and
the magnetic anisotropies, a significant dependence of δ f0 on
B/B may be expected for probe spins with biaxial anisotropy
(Es = 0), such as Mn on Cu2N. This is evident from Fig. 5,
showing that when the magnetic field is pointing in the x-y
plane (θ = π/2), |δ f0| can increase by ∼20% by tuning the
magnetic field direction from the hard axis (φ = 0, π ) to
φ = π/2, 3π/2. It is also clear from Fig. 5 that the largest
shift δ f0 is induced by a field B pointing along the easy axis
(θ = 0, π ).

V. CONCLUSION

In this work, we have explored a possibility for access-
ing the spin fluctuations from a Kondo impurity, based on
the ESR-STM technique. The spin fluctuations in the Kondo
impurity effectively shift the resonance transition line in the
probe spin, which can be detected with the ESR-STM setup
[40,50]. We estimate theoretically the shifts in the resonance
line for various types of probe spins on top of surfaces and
express then in terms of the dynamical spin susceptibility.

We find that the expected amount of shifts on the transi-
tion frequency f0 are most favorable under the existence of
a suitable transverse magnetic anisotropy, or with |�Sz| = 1
selection rules for the ESR-active states. These findings are
similar to the previous studies on Kondo effect with the STM
setups where, due to magnetic anisotropy, the conditions for
the Kondo resonance from single impurity on metallic surface
were shown to be different for impurities with S > 1 [38,54].
Through comparison among various existing impurities em-
ployed in the ESR-STM studies, it turns out that Mn on Cu2N
might be suitable for detecting the spin fluctuations.

Despite the small frequency shift δ f0 for Fe on MgO, this
type of ESR probe is very promising because of its large per-
pendicular magnetic anisotropy and the long lifetime of spin
excited state [51,53,55]. We expect that significant improve-
ment may be achieved, e.g., through multiple-step transitions
involving the excited states, similar methods had already been
discussed in the context of single molecular magnets [71–75].
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APPENDIX A: CALCULATION OF I( f )

We summarize in this Appendix the main features of the
tunneling current between the STM tip and the substrate, and
discuss how it allows one to detect the energy levels of the
probe spin. We start by the Hamiltonian of the STM measure-
ment device without an ESR drive:

ĤSTM = Ĥprobe + Ĥs + Ht + V̂tun, (A1)

where Ĥprobe is given in Eq. (2), with eivenvalues and eigen-
states En and |n〉, respectively. The other terms of ĤSTM

include the free Hamiltonians for the SP tip and substrate:

Ĥt =
∑
k,σ

εT
k,σ t̂†

k,σ t̂k,σ , Ĥs =
∑
q,σ

εS
q,σ ŝ†

q,σ ŝq,σ , (A2)

as well as their tunnel coupling in the presence of the probe
spin [58,59]:

V̂tun =
∑
k,q

∑
σ

{
(Tk,qt̂†

k,σ
ŝq,σ + H.c.)

+
∑

μ

∑
σ ′

(
T ′

k,q

σ
μ

σ,σ ′

2
Ŝμ

p t̂†
k,σ ŝq,σ ′ + H.c.

)}
(A3)

�
∑

α

∑
k,σ

∑
q,σ ′

(
T (α)

σα
σ,σ ′

2
Ŝα

p t̂†
k,σ ŝq,σ ′ + H.c.

)
. (A4)

The first (second) line of Eq. (A4) describes elastic (inelastic)
tunneling, with tunneling strength given by Tk,q (T ′

k,q). In the
third line of Eq. (A4), the index α sums over 0, and μ = x, y, z,
with Ŝα=0

p = Îp the identity operator and σ 0 the two-by-two
identity matrix. In the spirit of the commonly employed wide-

band limit approximation, the tunnel couplings Tk,σ and T ′
q,σ ′

are assumed to be constant [76], i.e., T (0) ≡ T0 and T (μ) = T ′
0

while ζ = T ′
0/T0 quantifies the relative strength of inelastic to

elastic tunneling.
In the weak-tunneling limit, the relaxation rate from state

|m〉 to state |n〉 of the probe spin could be calculated using
Fermi’s golden rule expressions [58,59]:

h̄�tip→sub
m→n = π

2

∑
k,k′

∑
σ,σ ′

∣∣∣∣∣
∑

α

T (α)σα
σ ′,σ Sα

nm

∣∣∣∣∣
2[

1 − fS
(
εS

k′,σ ′
)]

× fT
(
εT

k,σ

)
δ
(
Em + εT

k,σ − En − εS
k′,σ ′

)
(A5)

and

h̄�sub→tip
m→n = π

2

∑
k,k′

∑
σ,σ ′

∣∣∣∣∣
∑

α

T (α)σα
σ,σ ′Sα

nm

∣∣∣∣∣
2[

1 − fT
(
εT

k,σ

)]
× fS(εS

k′,σ ′ )δ(Em + εS
k′,σ ′ − En − εT

k,σ ), (A6)

where Sα
nm = 〈n|Ŝα

p |m〉 are matrix elements of the probe spin,
fS,T(ε) = {exp[β(ε − μS,T)] + 1}−1 are the Fermi-Dirac dis-
tribution function of the substrate and SP tip, and we take real
tunneling amplitudes. �

tip→sub
m→n refers to the transition rate of

the probe spin from |m〉 to |n〉 due to an electron tunneling
from tip to substrate while �

sub→tip
m→n describes the same transi-

tion due to a reverse tunneling. The total transition rate is

�m→n = �tip→sub
m→n + �sub→tip

m→n . (A7)

Following the standard approach of replacing the summation
over k, k′ by integrals over energy, and assuming a constant
(spin-resolved) density of states ρTσ and ρSσ ′ for the SP tip
and the substrate, respectively, we can recast Eqs. (A5) and
(A6) to the following form:

h̄�tip→sub
m→n = π

2

∑
α,α′

T (α)Sα
nmMαα′G(Emn − eV )T (α′ )Sα′

mn,

h̄�sub→tip
m→n = π

2

∑
α,α′

T (α′ )Sα′
nmMα′αG(Emn + eV )T (α)Sα

mn,

(A8)

where the matrix M contains products of type ρTσ ρSσ ′ and is
defined as follows (basis ordering α = 0, x, y, z):

M =

⎡
⎢⎢⎢⎣

ρS↑ρT↑ + ρS↓ρT↓ 0 0 ρS↑ρT↑ − ρS↓ρT↓
0 ρS↑ρT↓ + ρS↓ρT↑ iρS↑ρT↓ − iρS↓ρT↑ 0

0 −iρS↑ρT↓ + iρS↓ρT↑ ρS↑ρT↓ + ρS↓ρT↑ 0

ρS↑ρT↑ − ρS↓ρT↓ 0 0 ρS↑ρT↑ + ρS↓ρT↓

⎤
⎥⎥⎥⎦. (A9)

In Eq. (A8), the function G(E ) = E/(1 − e−βE ) is due to the overlapping of the two Fermi-Dirac distribution functions and
eV = μS − μT is the applied bias, defined such that electrons tunnel from the SP tip to the substrate if V > 0 (e includes sign).

In the absence of ESR drive, the populations Pm = 〈m|ρ̂p|m〉 of the probe spin in state |m〉 can be found by solving the rate
equations [58,59]:

Ṗm(t ) =
∑

n

[�n→mPn(t ) − �m→nPm(t )], (A10)

which yield the stationary values Pm(∞). The dc current Idc can be evaluated as

Idc = −e
∑
m,n

(
�tip→sub

m→n − �sub→tip
m→n

)
Pm(∞). (A11)
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When the probe spin is driven by microwave field at fre-
quency f , one has to generalize the rate equation (A10) to a
master equation, which leads to a modification of the steady-
state populations Pm(∞) (thus, of the tunneling current). To
discuss the effect in a simple and relevant limit, we suppose
that the temperature and applied bias are sufficiently small to
neglect all the excitation rates, i.e., �m→n ≈ 0 if n > m. Then,
P0(∞) = 1 in the absence of the drive and a finite P1(∞) is
induced by the ESR excitation. Under these conditions, the
system can be restricted to the lowest two eigenstates |0〉 and
|1〉 of Ĥprobe, with the tunneling current taking the form

I ( f ) = I0 + 2IpP1(∞), (A12)

where we used Eq. (A11) together with P0(∞) = 1 − P1(∞).
The background (I0) and saturation (Ip) currents are the same
as Eq. (4) of the main text, and are given by

I0 = −e
(
�

tip→sub
0→0 − �

sub→tip
0→0

)
,

(A13)
2Ip = −I0 − e

∑
n=0,1

(
�

tip→sub
1→n − �

sub→tip
1→n

)
,

in terms of the transition rates defined in Eq. (A8).
To compute P1(∞) under the two-level approximation, we

describe the dynamical evolution through the Bloch equation
[40]:

d

dt
ρ̂p = 1

ih̄
[ĤTLS(t ), ρ̂p]

+ �1→0D[L̂0,1]ρ̂p + 2γdpD[L̂1,1]ρ̂p, (A14)

where L̂m,n := |m〉〈n|, D[L̂] is a superoperator defined by
D[L̂]Â := L̂ÂL̂† − 1

2 {L̂†L̂, Â} for a linear operator Â. The uni-
tary dynamics in Eq. (A14) is determined by

ĤTLS(t ) =
∑

n=0,1

En|n〉〈n| + h̄�

2

(|0〉〈1|ei2π f t + H.c.
)
, (A15)

with Rabi frequency �. The second line of Eq. (A14) de-
scribes the dissipative dynamics with phenomenological pure
dephasing rate γdp. The stationary solution of Eq. (A14) is
well known:

P1(∞) = 1

2

�2T1/T2

4π2( f − f0)2 + �2T1/T2 + 1/T 2
2

, (A16)

where the relaxation and dephasing rates are respectively
given by 1/T1 = �1→0 and 1/T2 = �1→0/2 + γdp. Finally,
substituting Eq. (A16) in Eq. (A12) leads to Eq. (4) of the
main text.

APPENDIX B: MASTER EQUATION AND ĤLamb

Here, we give the detailed derivation for the energy shifts
Eq. (13). We start from the master equation Eq. (10), which
is the standard form derived under the Born-Markov approxi-
mation, valid in the weak-coupling limit [66,77]. It is worth
mentioning that, in writing such master equation, we also
assume 〈

Ŝμ
K

〉
Kondo ≡ Tr

Kondo

{
Ŝμ

K ρ̂Kondo
} = 0. (B1)

This condition of a negligible spin polarization is consistent
with the general discussion in the main text, where we re-

quired that kBTK is much larger than other energy scales (and,
in particular, than the Zeeman energy).

To obtain an explicit form of the master equation in
Eq. (10), we further invoke the rotating wave approximation
under the eigenstate representation of Ĥprobe [66], which gives

d

dt
ρ̂ (I)

p (t ) = 1

ih̄

∑
μ,m,n

[∣∣Sμ
mn

∣∣2Wμ(Enm)|m〉〈m|, ρ̂ (I)
p (t )

]

+ 2π

h̄

∑
μ

J2
μ

(∑
m =n

A>
μ (Emn/h̄)

∣∣Sμ
mn

∣∣2D[|n〉〈m|]

+ A>
μ (0)D

[∑
m

Sμ
mm|m〉〈m|

])
ρ̂ (I)

p (t ), (B2)

where A>
μ (ω) is the diagonal part of the greater spectral func-

tion:

2π h̄A>
μν (ω) =

∫ ∞

−∞
dt eiωt

〈
Ŝμ

K (t )Ŝν
K

〉
, (B3)

and the time dependence in the Kondo impurity operators
Ŝμ

K (t ) = eiĤKondot/h̄Ŝμ
K e−iĤKondot/h̄ is due to the interaction pic-

ture. Note that the greater spectral function is diagonal,
A>

μν (ω) = A>
μ (ω)δμν , due the spin isotropy of the Anderson

Hamiltonian Eq. (5).
The first line of Eq. (B2) is responsible for the Lamb shift

term ĤLamb in Eq. (11). Weighting factor Wμ(ω) is related to
A>

μ (ω) through the Hilbert transform

Wμ(−E ) := J2
μ Pr

∫ ∞

−∞
dω′ A>

μ (ω′)
E/h̄ − ω′ , (B4)

Wμ(E ) can be written in terms of the susceptibility by making
use of the fluctuation-dissipation (FD relations for A>

μν (ω)
[78]:

A>
μν (ω) = δμν

Imχμ(ω)

π (gμB)2
[1 + fB(h̄ω/kBT )]. (B5)

By substituting Eq. (B5) in Eq. (B4), noting the prop-
erty Imχμ(−ω) = −Imχμ(ω), and defining the normalized
weighting factor as

Wμ(E ) := −Wμ(E )
(gμB)2

χμ(0)J2
μ

,

we obtain Eq. (14) of the main text.
The second and third lines of Eq. (B2) describe the dissi-

pative effects of the Kondo impurity on the probe spin and
constitute dissipation term R[ρ̂ (I)

p ] in Eq. (11). A tedious but
straightforward inspection of the diagonal part of R[ρ̂ (I)

p ] is
given by

〈m|R[ρ̂ (I)
p

]|m〉
=

∑
n( =m)

(
�n→m〈n|ρ̂ (I)

p (t )|n〉 − �m→n〈m|ρ̂ (I)
p (t )|m〉), (B6)
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where the relaxation rate �n→m from state |n〉 to state |m〉 is
given by

h̄�n→m =2
∑

μ

J2
μ

(gμB)2
|Sμ

nm|2Imχμ

(
Enm

h̄

)[
1 + fB

(
Enm

kBT

)]
,

(B7)

where we have used Eq. (B5). Similarly, the off-diagonal part
of R[ρ̂ (I)

p ] is given by

〈m|R[ρ̂ (I)
p (t )

]|n〉 = − 1

2
γmn〈m|ρ̂ (I)

p (t )|n〉

− 1

2

∑
l ( =m)

�m→l〈m|ρ̂ (I)
p (t )|n〉

− 1

2

∑
l ( =n)

�n→l〈m|ρ̂ (I)
p (t )|n〉, (B8)

where

h̄γmn = T/TK

πkBTK

∑
μ

2J2
μ

(
Sμ

mm − Sμ
nn

)2
. (B9)

These expressions allow us to estimate the relaxation time T1

and the dephasing time T2 within the two-level approximation
[see also the Bloch equation in Eq. (A14)] and in the low-
temperature limit (kBT � h f0 � kBTK ) by

2π/T1 = |�1→0| ≈ 2

(
h f0

kBTK

)∑
μ

J2
μ/h̄

πkBTK

∣∣Sμ
10

∣∣2 (B10)

and

2π/T2 = |(�0→1 + �1→0)/2 + γ01/2|
≈ |�1→0/2 + γ01/2|

≈
∑

μ

J2
μ/h̄

πkBTK

{∣∣Sμ
10

∣∣2 h f0

kBTK
+ (

Sμ
11 − Sμ

00

)2 kBT

kBTK

}
.

(B11)

Based on the ESR line shape in Eq. (4) [or, equivalently,
Eq. (A16)], one can further estimate the linewidth � f [we
define it as the full width at half maximum] by

h� f ≈ 2

√√√√√
(∑

μ

J2
μ

∣∣Sμ
10

∣∣2
π h̄ kBTK

h f0

kBTK

)2

+ 1

2
(h̄�)2. (B12)

It has values in the submegahertz range or less. Note that
the ESR linewidth is mainly determined by the instrumental
factors such as the strong driving rf field and tip-sample vi-
brations [40], which is typically in the megahertz range.

APPENDIX C: ALTERNATIVE EFFECTIVE
SPIN HAMILTONIAN

In the main text, the probe spin is described through the
spin Hamiltonian (2). By restricting ourselves to impurities
with C4v symmetry (see Table I), we consider here a more
fundamental model which takes into account explicitly the
orbital degrees of freedom.

FIG. 6. Energy level structure of an Fe probe spin with C4v local
symmetry. Left panel: Structure of the five L = 2 orbital levels.
The two lowest orbitals are further mixed by the F0 crystal-field
term appearing in Eq. (C1). Right panel: Detailed structure of the
low-energy subspace, corresponding to five S = 2 sublevels.

A standard derivation of the effective spin Hamiltonian
(2) treats the spin-orbit coupling (SOC) as a perturbation,
compared to the orbital level splittings. This assumption is
usually well justified for 4 f electrons [46,48], but might be
violated for adatoms with 3d electrons [48,49]. In this case,
the crystal-field Hamiltonian ĤCF = ∑

i Ĥ (i)
CF is decomposed

into various terms with decreasing strengths |Ĥ (1)
CF | > |Ĥ (2)

CF |
> · · · > |Ĥ (k)

CF |, and the spin-orbit term ĤSOC affects the sys-
tem at some intermediate level |Ĥ (1)

CF | > |ĤSOC| > |Ĥ (k)
CF |, thus

a treatment taking into account explicitly the crystal field is
more appropriate. Among interesting impurities falling into
this regime is Fe on MgO/Ag(100), which was successfully
exploited as probe spin in ESR-STM experiments [40,41]. Its
energy level structure is schematically shown in Fig. 6.

In case the total orbital L and total spin S angular mo-
mentums of the probe atom’s electrons are still approximately
good quantum numbers, the crystal-field Hamiltonian ĤCF can
be constructed by the method of operator equivalence [49,79].
For impurities with C4v or C∞v local symmetry, the general
form of ĤCF reads [40]

ĤCF = DL̂z
pL̂z

p + E0
(
L̂z

p

)4 + F0(L̂4
+ + L̂4

−). (C1)

The other two terms entering the total Hamiltonian, Ĥatom =
ĤCF + ĤSOC + ĤZ, are the spin-orbit coupling:

ĤSOC = λzL̂
z
pŜz

p + λ⊥
2

(L̂+Ŝ− + L̂−Ŝ+), (C2)

and the Zeeman splitting:

ĤZ = gμBB · Ŝp + gLμBB · L̂p. (C3)

Considering Fe on MgO/Ag(100), theoretical and experi-
mental studies give the values D = −433 meV, E0 = 0,
F0 = 2.19 meV, λz = λ⊥ = −12.6 meV, g = 2, and gL = 1
[40,51]. As shown in Fig. 6, the F0 term splits |L,±2〉 states
by 48F0, which is of the same order as the spin-orbit coupling
term 2λz,⊥Sz

p. Thus, it is not a good approximation to treat the
SOC as a perturbation for the two lowest eigenstates of ĤCF.

Despite this apparent difficulty, in Fig. 7 we compare the
ESR frequency shift δ f0 computed from Ĥatom or the ef-
fective spin Hamiltonian Eq. (2). Besides a relatively small
difference (which, in principle, can be compensated by small
adjustments of the effective parameters in Table I), the two
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FIG. 7. ESR frequency shift as a function of the ratio Jz/Jx,y, for
an Fe probe spin on MgO (cf. the black dashed curve in Fig. 3).
The green and black solid curves are calculated from the full model
Eq. (C4) and the two-orbitals model Eq. (C9), respectively. The red
circles are obtained from the effective spin Hamiltonian Eq. (2),
with parameters listed in Table I. Other parameters: L = S = 2, D =
−433 meV, F0 = 2.19 meV, λz = λ⊥ = −12.6 meV, Bz = 0.2 T,
Bx = 6 T, T = 0.5 K, kBTK = 1 meV, and Jx = Jy = 1 μeV.

models are in agreement in predicting a small value δ f0 �
30 Hz, weakly sensitive to the anisotropy of the exchange
interaction.

We can also derive an alternative effective model, by re-
stricting ourselves to the subspace spanned by |L,±2〉 and
eliminating direct transitions to the higher orbital levels. To
this end, we make the following partition of the total Hamil-
tonian:

Ĥatom = Ĥ0 + Ĥ1 + Ĥ2, (C4)

where the unperturbed Hamiltonian is

Ĥ0 = D
(
L̂z

p

)2 + F0(L̂4
+ + L̂4

−) + λzL̂
z
pŜz

p, (C5)

which includes here both crystal-field and spin-orbit coupling
terms. The two perturbations are given by

Ĥ1 = μBL̂x
pBx + 1

2λ⊥(L̂+Ŝ− + L̂−Ŝ+), (C6)

as well as the remaining of the Zeeman term (assuming B in
the x-z plane)

Ĥ2 = μBBz
(
L̂z

p + 2Ŝz
p

)+ 2μBBxŜx
p. (C7)

We obtain the effective Hamiltonian by applying a Schrieffer-
Wolff transformation [80]:

Ĥ ′
probe ≈ Ĥ0 + 1

2 [Ĥ1, Ŝ] + e−ŜĤ2eŜ , (C8)

where Ŝ satisfies Ŝ = −Ŝ† and [Ŝ, Ĥ0] = Ĥ1, i.e., it is chosen
to eliminate Ĥ1 to the lowest order. Since Ĥ2 is already small,
we neglect in the last term of Eq. (C8) the corrections induced
by the unitary transformation. Furthermore, Ŝ involves tran-
sitions between the |L,±2〉 and |L,±1〉 subspaces, and we
can set the energy denominators equal to 3D. As illustrated in
Fig. 7, this approximation neglects corrections to the eigenen-
ergies induced by F0 and and λz which, however, are much
smaller than D. Finally, after dropping a small shift equal to
(μBBx )2/(3D), we obtain

Ĥ ′
probe = 4D − 6D′

s + 24F0τ̂
x + D′

s

(
Ŝz

p

)2 + λ′
zŜ

z
pτ̂

z

+ 2μBBz
(
Ŝz

p + τ̂ z
)+ μBgxBxŜx

p, (C9)

where τ̂ μ are Pauli matrices of a pseudo spin-1/2 particle
spanned by the two lowest orbital states:

τ̂ x = |L, 2〉〈L,−2| + |L,−2〉〈L, 2|,
(C10)

τ̂ z = |L, 2〉〈L, 2| − |L,−2〉〈L,−2|,
and the coefficients in Eq. (C9) are given by

D′
s = λ′

z − 2λz = −λ2
⊥

3D
, gx = 2

(
1 + λ⊥

3D

)
. (C11)

The effective spin Hamiltonian Eq. (C9) is valid provided
that F0, |λz,⊥| � D are satisfied, and is applicable to adatoms
with C4v or C∞v local symmetry. In Fig. 7, we see that the
ESR frequency shift δ f0 obtained from Ĥ ′

probe is in excellent
agreement with the full model.

In closing, we note that the parameters of the two-orbitals
effective Hamiltonian also allow for a transparent description
of ESR-STM setups. For example, according to Ref. [40],
the ESR drive modifies the local electrostatic environment
in a time-dependent way, yielding a cosine modulation of
F0. Such coupling appears explicitly in Eq. (C9) and, for a
given strength of the F0 modulation, it would be possible to
compute in a rather straightforward way the Rabi frequency of
the ESR transition. Instead, the ESR drive enters the effective
parameter of Eq. (2) in a more complicated manner.
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