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The Kibble-Zurek mechanism (KZM) is generalized to a class of multilevel systems and applied to study
the quenching dynamics of one-dimensional (1D) topological superconductors (TS) with open ends. Unlike the
periodic boundary condition, the open boundary condition, which is crucial for the zero-mode Majorana states
localized at the boundaries, requires one to consider many coupled levels. Our generalized KZM predictions
agree well with the numerically exact results for the 1D TS. In particular, the generalized KZM explains well the
Majorana-mode contribution to the topological defects, which utterly defies the traditional KZM. The inherent
bound-state character and multilevel structure of the Majorana mode, which play key roles in the TS, are efficiently
captured by the generalized KZM.
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I. INTRODUCTION

Conventional second-order phase transitions (PTs) are
driven by the spontaneous symmetry breaking and typically
described by local order parameters, which take continuous
values. Various critical scalings are traced back to symmetry
breaking. On the contrary, topological PTs involve the change
in internal topology rather than symmetry breaking. Neces-
sarily, topological states are classified by topological quantum
numbers, which are discrete. For instance, topological insu-
lators and superconductors are characterized by the number
of gapless boundary (surface, edge, or endpoint) states [1–3]
separated from gapped bulk states. These observations raise
an intriguing question of how the topological order emerges or
disappears temporally when system parameters are quenched
across the critical point [4–7].

This question becomes even more curious when one recalls
that the Kibble-Zurek mechanism (KZM), i.e., a theory of
the formation of topological defects in second-order PTs,
establishes quite accurate connections between the equilibrium
critical scalings and the nonequilibrium dynamics of symmetry
breaking. The KZM was originally put forward to study
the cosmological PT of the early universe [8,9] and later
extended to study classical PTs in condensed matter [10,11].
Recently, it was found to apply to the Landau-Zener transitions
in two-level quantum systems [12,13] and the dynamics of
second-order quantum PTs [14,15] as well. In fact, these latter
two classes of dynamics share a key characteristic, the “critical
slowing down” which comes from the critical scaling of the
correlation length for the former and the reduced level spacing
for the latter. Nevertheless, the agreement between the KZM
prediction and the exact dynamics still remains “somewhat
surprising” [16]. It is then a demanding question of whether
topological PTs, which are not even driven by symmetry
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breaking (critical scaling), can be described in the spirit of
KZM. Interestingly, a recent study of the Creutz ladder and the
p-wave superconductor wire pointed out that topology makes
the density of defects deviate strongly from the two-level KZM
scaling [6,7].

In this work, we generalize the KZM to a class of multilevel
systems and apply it to study the quenching dynamics of
one-dimensional (1D) topological superconductors (TS). We
stress that the open boundary condition (OBC), which is
crucial for the zero-mode Majorana states localized at the
boundaries, requires us to consider many coupled levels [6,17].
Under the periodic boundary condition (PBC), the system
is essentially a two-level system involving two modes of
opposite momenta [14,18]. The traditional KZM has been
thus limited to effectively two-level systems by adopting
the periodic boundary condition or by considering only the
low-lying two levels in the open-end systems. To extend the
KZM to multilevel systems, we formulate the dynamics using
the dynamical transition matrix and develop the so-called
conserving and nonconserving KZM. Both are equivalent
to the KZM for two-level systems. Our generalized KZM
predictions, taking into account the Majorana states formed
at its ends and its dynamical transition into multilevels, agree
well with the numerically exact results for the 1D TS, capturing
the inherent bound-state character and multilevel transition
behavior of the Majorana mode. Our approach may provide a
systematic and efficient way to understand the time evolution
of more general classes of systems beyond two-level systems.

II. GENERALIZED KIBBLE-ZUREK MECHANISM

We first state the dynamical problem of our concern and
develop the generalized KZM to attack the problem. Since
the many-body dynamics of a noninteracting system is closely
related to the single-particle dynamics, we focus on the single-
particle dynamics here. We will come back to the full many-
body problem in the following sections.
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Consider a single-particle Hamiltonian H (t) which varies
with time t via a time-dependent parameter M(t) and de-
fines (N + 1) instantaneous eigenstates |�n(t)〉 with energies
En(t) (n = 0,1, . . . ,N ; N = ∞ for the continuum model)
at each time t . When |�(t)〉 is expanded into |�(t)〉 =∑

n βn(t) |�n(t)〉, the amplitudes βn(t) satisfy the effective
Schrödinger equation,

i
d

dt
βm(t) =

∑
n

Kmn(t)βn(t), (1)

with Kmn(t) ≡ δmnEn(t) − �mn(t) and �mn(t) ≡
i 〈�m(t)|�̇n(t)〉 or, equivalently,

βm(t) =
∑

n

Umn(t,t0)βn(t0). (2)

The effective Hamiltonian K(t) in (1) includes off-diagonal
elements �mn(t) with the common phase fixing choice
�nn(t) = 0. Mathematically, the matrix �(t) gives the dynami-
cal connection between the instantaneous eigenstates at differ-
ent times, 〈�m(t)|�n(t ′)〉 = Wmn(t,t ′) ≡ T exp[i

∫ t

t ′ ds �(s)].
Physically, �mn(t) is responsible for the dynamical transitions
between different instantaneous energy levels Em(t) and En(t).

The essential spirit of the KZM is to devise an efficient
method to examine the true dynamical wave function |�(t)〉
of the system based on the adiabatic-impulse approximation.
Hence it requires the intrinsic time scales of the system to all
be known. The simplest is the case where all instantaneous
eigenstates are known, as we primarily discuss in the present
work. It is stressed that calculating instantaneous eigenstates
is usually simple and easy, whereas solving true dynamics
[Eqs. (1) or (2)] out of such instantaneous eigenstates can
often be very complicated and difficult. For example, even
a single spin 1/2 under a time-dependent external magnetic
field cannot be solved exactly in general (except for the Rabi
and Landau-Zener models). In this respect, our scheme cannot
apply directly to topological states involving strong many-
body correlation. In order for our scheme to be applied to
such correlation-induced topological states, some approximate
quasiparticle spectrum needs to be available.

The generalized KZM to be developed below requires the
energy levels En(t) and the dynamical transitions �mn(t)
between them to satisfy the following two conditions: The
level spacings satisfy

|En−1(t) − En(t)| < |En(t) − En+1(t)|, (3)

and the direct transition is allowed only for nearest-neighbor
pairs of levels,

�mn(t) ≈ 0 unless m = n ± 1 . (4)

These two conditions are satisfied by a broad range of systems
subject to open boundary conditions. One important example
we will study in the following sections is a 1D topological
superconductor whose energy-level structure is shown in
Fig. 1(a).

We now develop the generalized KZM. Suppose that
initially |�(t = −∞)〉 = |�0(−∞)〉 . We want to examine
the final state |�(∞)〉 in the far future. Within the spirit of
the KZM [12,13,16], we determine adiabatic-impulse (AI)
crossover points tn and t ′n by comparing the relaxation time
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FIG. 1. (Color online) (a) The quasiparticle energy levels (col-
lecting only even-parity modes; see the text) where En(t) is labeled
in the ascending order of |En| and (b) relaxation time scales in a 1D
TS of length L and “mass” M(t)L = t/τQ, where τQ is the quenching
time. The AI crossover points tn and t ′

n (n = 1,2, . . .) are indicated
by thin vertical lines in (b).

scale, τn(t) = 1/|En(t) − En−1(t)|, and the time scale for the
relative coupling to develop, M(t)/Ṁ(t) = t :

τn(tn) = −αtn , τn(t ′n) = +αt ′n (1 � n � N ), (5)

where α = O(1) is a fitting parameter [19]. Due to the
level-spacing structure in Eq. (3), the crossover points are
arranged in the order t1 < · · · < tN < t ′N < · · · < t ′1 [see
Fig. 1(b)]. Here note that the crossover points may not
be symmetric about the critical point (tn �= −t ′n) [13]. The
asymmetry naturally arises in Majorana systems because the
zero-energy Majorana mode appears only in one phase during
the topological phase transition.

The initial evolution from t = −∞ to t1 is completely
adiabatic and thus |�(t1)〉 = |�0(t1)〉 . From this moment to t2,
the two levels E0(t) and E1(t) become impulsive, but the rest,
far away from the two, still remain unpopulated. In the two-
level case, the AI approximation assumes that the state remains
completely intact: |�(t2)〉 = |�(t1)〉. A vital difference in the
multilevel case is that it violates the probability conservation
because even the relatively adiabatic states |�n(t2)〉 (n � 2)
have finite overlaps with |�0(t1)〉 and |�1(t1)〉.

Therefore, we instead choose to “prune” the effective
Hamiltonian Kmn(t) as follows: Suppose that the first (r + 1)
levels E0,E1, . . . ,Er are impulse. Then we ignore the energy
differences among impulse levels, Em ≈ 0 (0 � m � r), and
keep only the the dynamic transitions between impulse levels,
�mn(t) ≈ 0 either for 0 � m � r < n or for r < m,n. This
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leads to the pruned effective Hamiltonian,

K (r)
mn(t) =

{−�mn(t) (m,n � r)

δmnEn(t) otherwise,
(6)

and the corresponding pruned evolution matrix U (r)(t,t ′) ≡
T exp[−i

∫ t

t ′ ds K (r)(s)]. The pruning amounts to evolving the
impulse levels solely by the dynamic transition matrix �ij ,
while keeping the adiabatic levels intact. Being unitary, U (r)

mn

preserves the probability. Within the AI approximation, the
evolution is thus expected to be governed by

U (r,s) ≡ U (r)(t ′r ,t
′
r+1) · · · U (N−1)(t ′N−1,t

′
N )

×U (N)(t ′N,tN )U (N−1)(tN ,tN−1) · · ·U (s)(ts+1,ts). (7)

Indeed, getting back to the example, the evolution from t1 to
t2 is described by βm(t2) ≈ ∑

n U (1)
mn(t2,t1)βn(t1). Note that for

the two-level case (N = 1), this is equivalent to the original AI
approximation [12,13]. The same procedure is repeated until
tN to get [recall βn(−∞) = δn0]

βm(tN ) = [U (N−1)(tN ,tN−1) · · · U (1)(t2,t1)]m0. (8)

After the moment t = t ′N , the level EN (t) becomes relatively
adiabatic again and its occupation probability does not
change from |βN (t ′N )|2. The rest evolve impulsively until
t = t ′N−1, when the level EN−1(t) becomes relatively adiabatic.
Repeating this approximation until t = t ′1, after which the
whole evolution becomes adiabatic, one finally obtains the AI
approximation for the amplitudes βm(∞) ≈ U

(m,n)
m0 . Similarly,

starting from a general initial state |�n(−∞)〉 with n > 0, one
gets the occupation probabilities

Pm|n(∞) ≈ ∣∣U (m,n)
mn

∣∣2
, Pm|0(∞) ≈ ∣∣U (m,1)

m0

∣∣2
,

(9)
P0|0(∞) ≈ ∣∣U (1,1)

00

∣∣2
, P0|n(∞) ≈ ∣∣U (1,n)

0n

∣∣2
,

where m,n > 0. Equation (9) is called the conserving KZM
for the multilevel system as it conserves the probability,∑

m Pm|n(∞) = 1. It generalizes the KZM for two-level sys-
tems, and the calculation involves simple procedures requiring
only instantaneous eigenvectors.

Although the expression (9) requires only instantaneous
eigenvectors at discrete times, one still needs to calculate the
time-ordered exponential function of the matrix �(t). As we
will see now, in many cases it can be avoided. For a large
system, the AI crossover points are closely packed and each
factor in (9) can be approximated by

U
(r)
ij (t + η,t) ≈

{
δij + iη�ij (t) (i,j � r)

δij [1 − iηEj (t)] otherwise,
(10)

up to O(η2). When Eq. (10) is substituted into Eq. (9), due
to Eq. (4), only the subpart δij + iη�ij (t) (i,j � r) of each
matrix U (r)(t + η,t) contributes to the product; hence, U (r)(t +
η,t) in Eq. (9) can be replaced safely with 1 + iη�(t) ≈ W (t +
η,t) up to O(η2). Then the probability reduces to [recall that
Wmn(t ′,t) = 〈�m(t ′)|�n(t)〉]

Pm|n(∞) ≈ | 〈�m(t ′m)|�n(tn)〉 |2, (11a)

Pm|0(∞) ≈ | 〈�m(t ′m)|�0(t1)〉 |2, (11b)

P0|n(∞) ≈ | 〈�0(t ′1)|�n(tn)〉 |2, (11c)

P0|0(∞) ≈ | 〈�0(t ′1)|�0(t1)〉 |2, (11d)

where m,n > 0. This approximation, which we call the
nonconserving KZM for the multilevel system, drastically
simplifies the calculation of Pm|n which demands only the
overlap integrals of instantaneous eigenvectors at different
times. The caveat is that it violates the probability conservation
(hence the name “nonconserving”),

∑
m Pm|n(t) < 1, as it

involves eigenstates |�m(t ′m)〉 at different times for different
levels. The amount of violation, ε = 1 − ∑

m Pm|n(∞), gives
a convenient estimate of the error. The result (11) implies
that given the initial state |�n(−∞)〉, the system essentially
remains impulse from tn to t ′m. Indeed, the nonconserving KZM
essentially assumes that the part associated with the relative
impulse levels remains completely intact [see the discussion
above Eq. (6)]. However, the derivation of the nonconserving
KZM via the conserving KZM using the pruned evolution
matrix U (r)

mn paves a way to further generalizations of the
KZM for systems with more complicated level and coupling
structure. Moreover, in practice, the violation does not affect
its accuracy so much, as demonstrated below.

III. TOPOLOGICAL SUPERCONDUCTOR

Now we apply the generalized KZM developed above
to study the dynamics of topological phase transitions. We
consider a particular example, namely, 1D TS. 1D TS is a
simple but important prototype for the study of the dynamical
aspects of Majorana fermion.

A 1D TS of length L is described by the tight-binding
Hamiltonian of NL = L/a spinless fermions with a being the
lattice constant [20],

Ĥ (t) = w

2

NL−1∑
j=1

[ĉj ĉj+1 − ĉ
†
j ĉj+1 + H.c.] − μ(t)

NL∑
j=1

ĉ
†
j ĉj .

(12)

Here, for simplicity, we take the Ising limit in which the
p-wave superconducting order parameter � is equal to the
hopping amplitude w. In the quenching process, the chemical
potential μ(t)L = w(t/τQ + L) [21] is ramped up from 0 to
∞ through the transition point μ = w at t = 0. The process
drives the system from the topological (|μ| < w) to trivial
(|μ| > w) phase.

In the continuum limit, Eq. (12) is reduced to the Dirac
Hamiltonian

Ĥ (t) = 1

2

∫
dx �̂†(x)H (x,t)�̂(x), �̂ =

[
ψ̂

ψ̂†

]
, (13)

with H (x,t) = M(x,t)v2
s τz − i�vsτx∂x, where τx,τy,τz are

the Pauli matrices in the particle-hole space, �vs = a�, and
Mv2

s = μ − w. Hereafter, we use the unit system such that
� = vs = a = 1 (note that NL = L). The position-dependent
“mass” M(x,t) accounts for the spatially inhomogeneous
regions of the TS. We are particularly interested in the
case [22,23]

M(x,t) =
{∞ (|x| > L/2)
M(t) (|x| � L/2) . (14)

When M(t) < 0, there exist two zero-energy Majorana
fermions localized at x = ±L/2 [3]. In the continuum limit,
we consider the quenching of the form M(t)L = t/τQ [21].
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For simplicity, we mostly discuss the dynamics in terms of the
continuum model; qualitative features are the same.

A. Single-particle states

We start with the single-particle Dirac equation

H (x,t)�n(x,t) = En(t)�n(x,t). (15)

It has two important symmetries: the space inversion and the
particle-hole symmetry. The inversion symmetry allows us to
choose a solution to be a parity eigenstate and subject to the
boundary conditions

�n(L/2,t) = ±τz�n(−L/2,t) =
[

1
i

]
, (16)

where the sign ± corresponds to the even/odd parity under
the space inversion. Because of the particle-hole symmetry, if
�n(x,t) is a solution of the Dirac equation with energy En(t),
then its charge conjugation partner τx�

∗
n(x,t) is also a solution

but with energy −En(t). Further, if �n(x,t) has a definite (even
or odd) parity, then τx�

∗
n(x,t) has the opposite parity. Hence

it suffices to count only, say, even-parity solutions. Hereafter,
we reserve the notation �n(x,t) for the even-parity modes,

�n(x,t) =
[

sin(knL/2) cos(knx)
i cos(knL/2) sin(knx)

]
, (17)

with kn(t) satisfying tan(knL) = −kn/M . Odd-parity modes
are referred to by τx�

∗
n(x,t). The mode �n(x,t) has energy

En(t) = (−1)n−1
√

M2(t) + k2
n(t) with n = 0,1,2, . . . in the

increasing order of |En|, whose time dependence is illustrated
in Fig. 1(a). Of particular importance is the zero mode,
�0(x,t), whose energy E0(t) ≈ M(t)/ cosh[M(t)] is expo-
nentially small for M(t)L < −1 and physically responsible
for the Majorana modes localized at the interfaces (k0 is
purely imaginary). The energy levels En(t) and the dynamical
transitions �mn(t) between them in 1D TS [Fig. 1(a)] satisfy
the conditions (3) and (4), and hence we can apply the
generalized KZM developed above.

In passing, the property (4) casts a sharp contrast between
the OBC and PBC [14]. Under the PBC, momentum is
conserved and transitions in 1D TS occur only between
modes with opposite momenta k and −k: �kk′ = 0 unless
k + k′ = 0. Therefore, the dynamical model is essentially a
two-level system [14,18] and the KZM for two-level systems
is enough. Of course, in the thermodynamic limit, the boundary
condition does not make a difference in bulk states. However,
the Majorana states at the boundaries do not have a counterpart
under the PBC and cause the inherently multilevel dynamics.

B. Quasiparticle excitations

Let us now consider the dynamics of the many-body
Hamiltonian and apply the generalized KZM developed above.
The full many-body dynamics is intimately related to the
single-particle dynamics. To see the connection, denote the
quasiparticle operator for the mode �n(x,t) and τx�

∗
n(x,t)

by ân(t) and b̂n(t), respectively. Obviously, a
†
n(t) = bn(t). In

terms of these, the many-body Dirac Hamiltonian (13) reads
Ĥ (t) = ∑∞

n=0 En(t)[â†
n(t)ân(t) − 1/2]. The actual dynamics

is governed by the Heisenberg operators ãn(t), related to the

instantaneous eigenoperators ân(t) by ãn(t) = V̂ †(t)ân(t)V̂ (t),
where V̂ (t) is the many-body time-evolution operator V̂ (t) =
T exp[−i

∫ t

−∞ ds Ĥ (s)]. They satisfy the Heisenberg equation
of motion,

i
d

dt
ãm(t) =

∑
n

Kmn(t)ãn(t), (18)

or, equivalently,

ãm(t) =
∑

n

Umn(t,t0)ãn(t0), (19)

with U (t,t ′) = T exp[−i
∫ t

t ′ ds K(s)]. Equations (18) and (19)
illustrate that the effective single-particle Hamiltonian K and
the corresponding time-evolution operator U [see also Eq. (1)]
establish the connection between the many-body and single-
particle dynamics.

Initially (t0 = −∞), the system is prepared in its instanta-
neous many-body ground state |G(t0)〉, which is the vacuum
of all positive-energy modes, �2j+1(x,t0) and τx�

∗
2j (x,t0),

â2j+1(t0) |G(t0)〉 = b̂2j (t0) |G(t0)〉 = 0, (20)

and in which all negative-energy modes, �2j (x,t0) and
τx�

∗
2j+1(x,t0), are occupied,

〈G(t0)|â†
2j (t0)â2j (t0)|G(t0)〉

= 〈G(t0)|b̂†2j+1(t0)b̂2j+1(t0)|G(t0)〉 = 1. (21)

We examine the number of excited quasiparticles N in the
far future (t = ∞). N is directly related to the number of
topological defects created by the quenching process across the
critical point [14]. Due to the initial conditions (20) and (21),
the occupancy of positive-energy modes, τx�

∗
2i(x,∞) and

�2i+1(x,∞), are given by
∑∞

j=0 P2i|2j+1 and
∑∞

j=0 P2i+1|2j ,
respectively. The total number N of excited quasiparticles is
therefore given by N = ∑∞

i,j=0 [P2i|2j+1 + P2i+1|2j ].
The contribution of the Majorana mode, N0 ≡∑
m∈odd Pm|0, is of particular interest as it is known to defy

the traditional KZM [6,7]. It is stressed that the Majorana-
mode contribution N0 can be measured experimentally [24]:
Consider two different quenching procedures, with one starting
from the ground state |G(t0)〉 and the other starting with the
Majorana mode excited b̂

†
0(t0) |G(t0)〉 = â0(t0) |G(t0)〉. We find

that N0 is related to the difference �N in N for these two pro-
cesses by N0 = (1 − �N )/2 since �N = ∑

m∈even Pm|0 −∑
m∈odd Pm|0 and

∑
m∈odd Pm|0 + ∑

m∈even Pm|0 = 1.
Figure 2 shows N and N0 as a universal function of L/τQ

for both the continuum and lattice models. It demonstrates
that the generalized (both conserving and nonconserving)
KZM predictions agree well with the exact results [25].
More importantly, it reveals three more prominent features
of the generalized KZM distinguished clearly from the
traditional KZM: (i) The agreement remains good far beyond
the traditional KZM scaling region. The celebrated scaling
behavior N ∼ √

L/τQ (i.e., L
√

τ0/τQ in the natural units
and for the traditional L-independent definition of τQ [21]) is
known [14,16,26] to be valid only for relatively fast quenching
[Figs. 2(a) and 2(b)]. For slower quenching, the exact dynamics
and the traditional KZM do not agree any longer. On the
contrary, the generalized KZM works remarkably well even for
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FIG. 2. (Color online) (a),(b) The total number N of defects and
(c),(d) the contribution N0 of the Majorana state �0 in the (a),(c)
continuum model and (b),(d) lattice model. The black solid line,
blue filled circle, and red empty square are the results of the exact
calculation, conserving KZM, and nonconserving KZM, respectively.
The dashed line in (a) and (b) indicates the traditional KZM scaling
N ∼ √

L/τQ. (a),(c) N = 13. (b),(d) L = 100. Insets: The finite-size
scaling for different sizes (calculated by the nonconserving KZM).

slow quenching [Figs. 2(a) and 2(b)]. (ii) The Majorana-mode
contribution N0 completely defies the traditional KZM, as
first pointed out in Refs. [6,7], whereas it is well explained
by the generalized KZM [Figs. 2(c) and 2(d)]. Since the
Majorana mode plays a key role in the topological PT,
understanding its dynamics is vital. Its inherent bound-state
character and multilevel structure are efficiently captured by
the generalized KZM. (iii) The saturation of N0 to 1/2 for
fast quenching [Figs. 2(c) and 2(d)] is intimately related to
the multilevel structure and the localization of the Majorana
state, and Eq. (11b) provides a simple explanation: Let τ ∗

Q be
the quenching time such that M(t1)L = −1; L/τ ∗

Q ≈ 10. For
τQ � τ ∗

Q, M(t1)L � −1. It means that for such fast quench-
ing, the Majorana mode �0(x,t1) is well localized and its
overlap with any bulk state �m(x,t ′m) is the same, independent

of m. Hence, N0 = ∑
m∈odd | 〈�m(t ′m)|�0(t1)〉 |2 ≈ 1/2 since∑

m∈odd Pm|0 ≈ ∑
m∈even Pm|0 in this condition. For slower

quenching (τQ  τ ∗
Q), on the other hand, M(tn)L > −1 for all

n; namely, by the time the impulse region is reached, the state
|�0(t1)〉 loses the Majorana character and the above argument
does not hold any longer.

We finally note that Ref. [7] studied (numerically) a
different parameter regime of the same system (12). They kept
μ = 0 and varied w from −� to �. However, the dynamics is
essentially the same. With μ = 0, Eq. (12) is decomposed into
two decoupled Majorana chains that have opposite effective
Dirac masses, M(t) = w − |�| and −M(t), but are identical
otherwise. Explicit calculation indeed reproduces their results.

IV. CONCLUSION

In conclusion, we have developed a generalized KZM,
which agrees well with the exact dynamics in a wide range
of quenching rate. In particular, it successfully describes the
contribution of the Majorana mode to the quenching-induced
topological defects, which is essential in the dynamics of
the topological PT. While in this work we have applied
the generalized KZM only to a specific model such as the
1D topological superconductor, we believe that it can be
applied to many diverse systems. The only condition for our
KZM to work is that the system has the multilevel structure;
more specifically, that the level spacings and the dynamical
transitions follow Eqs. (3) and (4), respectively. Since the
multilevel structure appears frequently in finite-size systems,
our KZM can be used to study the effect of boundaries in the
quench process. More importantly, our scheme provides an
intuitive and systematic method to capture the physics of the
quench in terms of wave-function overlaps (11).

ACKNOWLEDGMENTS

This work was supported by the Korean Government
through the National Research Foundation (Grants No. 2011-
0030046 and No. 2015003689 ) and the BK21 Plus Project.

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[3] S.-Q. Shen, Topological Insulators, Vol. 174 of Springer Series

in Solid-State Sciences (Springer, Berlin, 2012).
[4] E. Perfetto, Phys. Rev. Lett. 110, 087001 (2013).
[5] W. DeGottardi, D. Sen, and S. Vishveshwara, New J. Phys. 13,

065028 (2011).
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