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Quantum dissipative dynamics of the magnetic resonance force microscope in the single-spin
detection limit

Hanno Gassmarin
Department of Physics and Astronomy, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland

Mahn-Soo Chdi
Department of Physics, Korea University, Seoul 136-701, Korea

Hangmo Yi
Korea Institute for Advanced Study, 207-43 Cheongryang 2-dong, Seoul 130-722, Korea

C. Bruder
Department of Physics and Astronomy, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
(Received 19 September 2003; published 22 March 004

We study a model of a magnetic resonance force micros@d-M) based on the cyclic adiabatic inver-
sion technique as a high-resolution tool to detect single electron spins. We investigate the quantum dynamics
of spin and cantilever in the presence of coupling to an environment. To obtain the reduced dynamics of the
combined system of spin and cantilever, we use the Feynman-Vernon influence functional and get results valid
at any temperature as well as at arbitrary system-bath coupling strength. We propose that the MRFM can be
used as a quantum measurement device, i.e., not only to detect the modulus of the spin but also its direction.
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[. INTRODUCTION chanical resonator has been used to detect the vibrational
motion of the resonator even in the quantum regime.
Magnetic resonance imaging technologi®sRl, NMR, The progress in MRFM and related technologies has also

ESR are widely used to characterize physical, chemical, andttracted theoretical interest, especially the question of
biological samples. What makes them powerful is that theysingle-spin detection using the MRFM. Mozyrslet al®
are nondestructive and capable to probe the threestudied the relaxation of a spin, treating the cantilever as a
dimensional structure of the sampl&ecently, looking at classical noise source. Berman and co-workefsstudied a
structures at the molecular or atomic level has become imcAl-based MRFM and treated both the spin and the cantile-
portant in a number of scientific disciplines. Magnetic reso-ver as quantum systems that are subject to environmental
nance force microscopé®RFMs) have been developed to effects. They addressed two interesting and important issues:
bring magnetic resonance imaging technologies to such awhich component is measured in an MRFM single-spin mea-
ultimate resolution. The MRFM combines conventional surement and whether the two spin stdtgsand downlead
magnetic resonance technology with probe microscope teche distinctively different cantilever motions. They solved nu-
nology, e.g., atomic force microscopy, to image individualmerically the time-dependent Scklinger equation for the
molecules or atom%.In a MRFM, a magnetic particle spin-plus-cantilever system in the absence of coupling to the
mounted on a cantilever interacts with nuclear or electrorenvironment. In the presence of an environment, they con-
spins in the sample via the very weak magnetic dipole forcestructed a generalized master equation in the high-
When modulated at resonance with the cantilever oscillatiomemperature limit, and solved it numerically. We note that
frequency, even a weak magnetic force induces sufficientlyheir master equation is based on the Markov approximation,
large vibrations of the cantilever. By probing the resultingand is not in Lindblad fori?'3 (the normalization and the
vibrational motion of the cantilever, it is in principle possible positivity of the density matrix are not guarantged
to detect spins with molecular or atomic resolution. The cy- In this paper, we study the measurement of single spins
clic adiabatic inversiofCAl) technique has been propoded with the MRFM based on the CAI technique. The starting
as a promising method to modulate the magnetic force.  point of our work is closely related to Refs. 10 and 11. In the
The future of the MRFM depends crucially on the devel-absence of the coupling to the environment, we solve the
opment of proper mechanical microresonators, e.g.time-dependent Schdinger equation exactly and confirm
cantilevers: Remarkable progress has been made in this dithe numerical results by Berman and co-work@rs:We use
rection, and the detection of atto-newton or subatto-newtomn open quantum system approatit i.e., we take the in-
scale forces has been achieved alréatiRecently, a nano- fluence of the environment into account by coupling a har-
mechanical flexural resonator at microwave frequencies hamonic oscillator bath to the cantilever. To calculate the dy-
also been realizetiThe development of the proper technol- namics of the spin during the measurement process, we take
ogy to detect nanometer-scale mechanical motion is also iman effective-bath approach, and obtain the exact solution for
portant. Optical interferometry or electrical parametric transthe reduced density matrix of the spin. To find the cantilever
ducers are the most common examgté$in recent work, a dynamics, we solve the Feynman-Vernon influence
single-electron transistor capacitively coupled to a nanomefunctional®!’ in order to obtain the reduced density matrix
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As in usual NMR setups, one puis;= €,=gugB|, whereg

B AOsciltatorBath is theg factor of the spin angkg is the Bohr magneton. For
later use, we also define =gugB, . The “sample” con-

z sists of a spin interacting with the ferromagnetic particle via
the magnetic forcey and with the static and rf fields. The
Hamiltonian of the spin and the cantilever is given by

HO) = — 2o, o, 190+ He]- no P 2
502~ 5 Loy Cl-mozt o+ =,
(2.2

Cantilever

magnetic R R R R
Particle where theo’s are Pauli matricesg . =(o,*ioy)/2, and
z (p,) is the positionlmomentum operator of the cantilever.
n In Eg. (2.2) and hereafter we use a unit system such that
=kg=wo={€,=1, wherewy is the natural frequency of the

;Spin cantilever and €,=\A/mw, is the harmonic-oscillator

y

length. It is convenient to move to a frame rotating with the
rf field by making a transformatidf

FIG. 1. MRFM measurement device. A cantilever carrying a t ot
magnetic particle is subject to a static magnetic figldin the H=A"THA-IAA 23
z-direction, and a time-dependent fieB) (t) rotating with fre- . . ~ . ) .
quencyw, in the x-y plane. The cantilever is coupled to a sample With Jél1=16Xp{ (i12)[et—(t)]oy. The resulting Hamiltonian

spin by a magnetic forcey. rea

- : - 1. . 1 . .. p: 7
of the spin plus cantilever system. Bo'gh methods.are valid at H(t) = — ()0, =€, 0— 7o, 2+ LAl (2.4)
any temperature as well as for an arbitrary coupling strength 2 2 2 2

(within the CAl schemg This analytical approach allows us i . _
to interpret the results in a transparent way and to investigatene idea of the CAl-based MRFM is as follows: The phase

the issue whether the MRFM can be used as a quantum meglodulation(t) of the rf field is assumed to be harmonic
surement device to probe the spin state. and causes adiabatic inversions of the spin, which in turn

The paper is organized as follows: In Sec. Il we first in-exert an oscillating force on the cantilever. At resonance, i.e.,
troduce the model and discuss our adiabatic Bornif the frequency of the modulation is equal to the natural
Oppenheimer approximation scheme in connection with th&’eduency of the cantilevefwhich is 1 in our units
CAl techniqgue. In Sec. Ill we present the exact solution of _
the time-dependent Schitimger equation for the spin-plus- d(t)= dosin(t— @), (2.9
cantilever system without coupling to the environment, the ) ) ) )
results of which will be compared with those in the dissipa-the vibration amplitude .of the cantilever can be large even
tive case in the later sections. In Sec. IV, we investigate théor & very small magnetic forcg. _
quantum dissipative dynamics of the spin alone using an Equation(2.4) describes a spin which couples to a har-
effective-bath approach. The dynamics of the cantilever ignonic oscillator and is itself subject to a time-dependent
investigated in Sec. V. The physical implications of the so-effective magnetic fieldyugBen(t)=¢€, e+ ¢(t)e,, where
lution are analyzed in detail and the possibility to use thee, ande, are unit vectors in the rotating system. The Hamil-
MRFM as a quantum measurement device is discussed itonian in Eqg.(2.4) is not exactly solvable. Here we make a
Sec. VI. Finally, in Sec. VIl we draw our conclusions. plausible approximation based on the following observa-

tions. For typical experimental paramet&ts! By varies
slowly compared with the Rabi oscillation frequency:
Il. MODEL |Beit(t)|/| Begt(t)| < €(t)= V€? + ¢?(t). According to the

We consider a MRFM setup based on the cyclic adiabati@diabatic theorerf'ﬁ'lgt.he spin part of the solution should be
inversion techniquésee Fig. 1 It consists of a ferromag- de_terml_ned t:y the adlat_)atlc_ evolution; ie., the spin “follows
netic particle mounted on the tip of a cantilever, a strong2diabatically” the effective fielB.(t). It is therefore con-
static magnetic field; in the z direction, and an rf field ~Venient to choose the basis stafes (1)) and|x—(t)) quan-

B, () rotating with frequencys, in thex-y plane modulated tized along the axis parallel B.x(t) (notice that there is no
by &(t): Berry phase because the solid angle encloseddft) is

zerg. In this basis, the Hamiltonian in E.4) is recast to

B, (1)=B,

cos{wrft—sﬁ(t)]} 1 . pt).. € .. PP

siwgt— G(1)] (2.7 H(t)= _Ee(t)TZ_ anZZ‘f‘ anxZ'f' ?‘F > (2.6
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where 7, and 7, are the Pauli matrices with respect to the ~We describe the system of spin plus cantilever in terms of
frame rotating adiabatically witB.4(t). We have suppressed the reduced density matrp(t) =trgp;(t) by tracing out the
the time arguments to the Pauli matrices,(t) bath. In the realistic typical experimental situation, the can-
=+ ()Y (O] = - (OWx_(0)] and o (t) tilever always remains in contact with the environment.
=X+ + - - X : ;

: . Thus, the cantilever and bath are not in a product state at the
=[x+ () x-O[+]x-()){x+(t)] in Eq. (2.6). This is be- b

cause within the adiabatic approximation, the dynamicé)eginning of the experiment. For the calculation with the

of the spin part of the wave function is completely governed'nﬂu?nce functional, we can take this fact Into account, as-
by the basis stategy-(t)) and the dynamic phases, suming that the cantilever and the bath were in a factorized

_ L ifldre) it e () state at a timé=tq. In the limit t,— — we get then the

Le., [x(t)=c e ot Uy, (1)) +c_e o [x-(1). We  yealistic initial state for the cantilever at the tire 0. If we

further note that the spin dynamics is much faster than thgoyid start with a factorized state between cantilever and

cantilever motiong(t)=¢, >1. The situation is reminiscent pat the solution would be very sensitive to the initial con-

of the Born-Oppenheimer approximatiGhwhere the nuclei dition of the cantilever: see Sec. IV.

interact with the average charge density of the electrons pyrthermore, it is assumed that the interaction between

which move much faster. In our system the nuclei correspe spin and the cantilever is turned ontat0, i.e., f(t)

spond to the harmonic oscillator which is interacting with the g for t< 0. The measurement happens at tirtie®. The

averaged motion of the spin. Therefore, one can drop the_. . - . .

third term in Eq.(2.6). (The deviation of the spin due to this Initial statep(0) of the density matrix is a product state,

term is also negligibly small since|(z(t))|<e(t); see be- 5(0)=p(9(0)p©(0), (2.10

low.) Using this approximation we finally get the following

Hamiltonian, which is the basis of the further considerationswvhere p(® is the density matrix for the spin only and®

in the paper: describes the cantilever in thermal equilibrium with the bath.
From the CAI scheme and from the associated adiabatic ap-

1 - .. p: 22 proximation discussed above it then follows that the density
H()=—5eO)7,—nf(O)r2+ 5+ 5, (2.7 matrix at timest>0 has the form
wheref(t)=(t)/e(t). This form is justified in a more rig- (s,Zpt)ls’,2y=p2(0p{J(zz',1). (2.1

orous way in Appendix A, also taking into account the influ- ) ) N

ence of the environmer(see below Its validity was also ' nuS, the dynamics of the density matfit) is completely

confirmed by the numerical simulations in Ref. 11. d?é;armmed by the spin-dependent cantilever part
So far we have described a model for an idealized systemsg (2,2',1).

of spin and cantilever. In reality they are coupled to various Here the spin-dependent cantilever part should not be

environments, which lead to decoherence as well as damgonfused with the density matrix for the cantilever only,

ing. In particular, the cantilever is inevitably under the influ- which is given by

ence of phonons or other vibrational modes which are close

in frequency to the single mode in question. T{wirect) (©) gy — ~ ,

environmental effects for the spin, e.g., hyperfine interaction, P2 szzt (s.2p(0]s,2')

spin-lattice relaxation, etc., are relatively small. Therefore, S © )

for simplicity, we assume a simple Ohmic bath of =p4(0)py 7 (2,2,1)

oscillatord>?1-23directly coupled to the cantilever but not to 9 (0)p©) (2,2’ 1) (2.12

the spin. Then the total Hamiltonian for the spin and the p-=\¥)p—-1&20) '

cantilever plus the oscillator bath is given by Analogously, the density matrix for the spin only at time
R , ) t>0 is given by
Pk Moy | - Ck -
Hioa( D =H(+ >, | 5—+ (Xk_ Z) ] *
E12me 2 mywj p2(1)=p{2(0) f dzp{J(zz). (213
2.8 =
All the relevant features of the Ohmic bath are characterized Nereé are several ways to prepare the SF)’i” in a particular
by the spectral density state!® and we will assume a general stafg)(0).
2
™ Ck I1l. COHERENT SOLUTION WITHOUT BATH
Jw)=75 2 ——d(w=wy)
kK Mgwy

Before we investigate the full Hamiltonian in E@.8), it
— 200 (1-wlwe), (2.9 will be instructive to first consider the problem without bath
[Eq. (2.7)]. The time-dependent Hamiltonian in E&.7) can
wherea is a dimensionless parameter characterizing the coube solved exactly for arbitrary functiongt) and f(t) of t
pling between the system and the environmenta@pds the  (of course, the variation oé(t) and f(t) in time should be
cutoff frequency. The spin dynamics and the probability dis-sufficiently slow so that the Hamiltonian E(R.7) is mean-
tribution of the cantilever will not depend on the cutoff. ingful).
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One can show that the time-evolution operatft,,t;)
=T exr[—if:idt’H(t’)] (T is the time-ordering operatpis
given by

i [t )
L{(tz,tl)=ex;{ic(t1,t2)+§f “dt’ e(t) 7,
ty

X D(1,&(t) Uo(t,— 1) DT (7,E(11)), (3.D)
where

) =i niftdt'e-i“-t’)f(t'), (3.2)
J2Jo

Up(t)=exp —ita’a), (3.3

a=(z+ip,)/\2, andD(¢) is a displacement operafbrde-
fined for a complex numbef by

D(&)=exp(éa’—£*a). (3.4)

The coefficientc(t,,t,) in Eq. (3.1 is a real function ot

andt, (one does not need an explicit expression of it becaus

it drops out of the following calculations

PHYSICAL REVIEW B69, 115419 (2004

low) that exactly at resonandsee Eq.(2.5)], |£(t)| in Eq.

(3.2 [and hence¢’ (t)| in Eq.(3.10] contains a term which
linearly increases with time In other words, the oscillation
amplitude of the cantilever gets indefinitely larger and larger
as time passes. This is not surprising since we are driving an
ideal oscillator at the resonance frequency, and in fact this is
what allows the MRFM to detect ultrasmall forces. In reality,
the cantilever is subject to various environmental effects and
the oscillation amplitude is bounded from abagve., theQ
factor is finitg. This is the case that we will study below.

IV. DYNAMICS OF THE SPIN

Now we take the influence of the bath into account. In this
section, we first analyze the dynamics of the spin. As de-
scribed abovésee the discussion above Eg.8)], there are
several environmental effects for the spin. In this calculation,
we assume that such effects directly cause the spin to be
small compared to the interaction with the measuring device,
i.e., the cantilever coupled to the oscillator bath. Thus, the
gdecoherence time of the spin in the absence of the cantilever
iIs assumed much longer than the time we need for the mea-

To illustrate the dynamics created by the time-evolutionSurement. These different time scales are necessary to pro-

operator in Eq(3.1), let us discuss an example. Suppose that/!d€ cyclic inversions of the spin.
A similar situation appears in the well-known Stern-

we start at timeg=0 with the cantilever in a coherent state,

#(z2,0)= ieXD[ - }22+ V2£0z—(Re&p)?|, (3.5

’ 4{/; 2 ’
and with the spin in a linear superpositiomith amplitudes
c, andc_)

|x(0))=c,|x+(0))+c_|x_(0)). (3.6
The total wave function at=0 is given by
|W(2,0))=¥(2,0)x(0)), (3.7

and, at a later tim¢>0, by

|‘I}(Z!t)>:C+ ¢+(th)|x+(t)>+C—w—(zvt)|x—(t)>
3.9

The cantilever wave function in E¢3.8) for each spin com-
ponent is given by

1 jtd
(zt)=— ic(t,0)xi "e(t’
P (z,1) %exp{m(t ) i . t'e(t")
xexp[—;22+ ﬁggmz—[Reg;(t)]Z],
(3.9
where
EL()=2 &)+ Ee (3.10

Therefore, the average position of the cantileve('iist))t
=2 Re&/, (t) for spins==,
erage momentum is given kyp,(t)). =2 Im&., (t). Here

it is interesting to notdgin comparison with the results be-

respectively, whereas the av-

Gerlach experiment, where the environment first collapses
the trajectory of the particle which then causes the collapse
of the spin. As in our calculation, other decoherence mecha-
nisms, which act directly on the spin, are neglected.

When we are interested in the dynamics of the spin alone
(the dynamics of the cantilever will be discussed in the fol-
lowing section, we can regard the cantilever as a part of the
environment. In fact, Gargt al?® (also see Refs. 26—28
showed that the problem is equivalent to a spin coupled lin-
early to an oscillator bath:

1 . - A .
Hiol( )= = 5 (7= 7f (072 9Bt b+ 2 by
4.7)

The distribution of the oscillator frequencieg and the cou-
pling constantg, are now characterized by a non-Ohmic
spectral density

aw

(w2—1)2+(aw)2.
(4.2

1
Jer(@)=2 gidlw—w)=—

To investigate the spin dynamics, we write the reduced
density matrix of the spin

PO (1) = trglhio 1) prod O) UL 1) 4.3

in terms of the time-evolution operatdf,(t) associated
with Ho(t) in Eqg. (4.1). In analogy to Eq(3.1), the time-
evolution operator is given by

1 D(r,&(t))e ertbibic
(4.4

it -
Utot(t):eXF{—f dt'e(t’) 7,
2J)o

115419-4
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where

£ =i 70 f dre itVudy, 45
0

andD is now the displacement operator for tkién mode of
the bath, i.e.a should be replaced bly, in Eq. (3.4).
For the initial statep,,,(0), we assumdsee Eqs(2.10]

ﬂwkb by
pro0)= <S><0>H (4.6
Then the density matrix for the spin is given by
200 =p2i0exg1 J;dvew)}
< I (D1 EDEED), (47

where(- - - ) is the average with respect to tkih oscillator
in the bath.

Equation(4.7) shows that the diagonal elements of the
density matrix 6=s') are constant in time

S(t)=p2(0).

Pes (4.8

In other words, there is no spin relaxation and the spin dy-

PHYSICAL REVIEW B 69, 115419 (2004

Sl

(
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15

FIG. 2. Main plot: [p® (t)| for different temperaturest
=0, 1, 2, 5, 10, and 100, fogy=1000, €, =400, =0.3, «
=0.006, andw-=1000. The initial condition for cantilever and
bath is the thermal equilibrium state. Inset: same quantity for an
initial product state of cantilever and bath. Initially, the cantilever
wave function is a Gaussian with widih= \/§ In both cases,
pg(O): 1/2 fors,s'==.

V. DYNAMICS OF THE CANTILEVER

In Sec. Ill, we described the driven dynamics of the oth-

namics is pure dephasing because there are no transvemgavise isolated system of spin and cantilever determined by
fields. This is consistent with the adiabatic approximation wethe Hamiltonian Eq(2.7). In this section, we now take into

made at the beginning.
On the other hand, the off-diagonal elemergs-§') are

account the influence of the environment starting from the
Hamiltonian Eq.(2.8). The reduced dynamics is obtained

expected to vanish rapidly with time. This can be seen fronanalytlcally with the Feynman-Vernon influence func-

[see Eq(4.7)]

t
pS (1)=pS (O)ex;{—r(t)ﬂf dt’e(t’)|, (4.9
0
where
r(t=2> |§k(t)|2cotr(% : (4.10
k
or in terms of the spectral density function
o w t . , 2
F(t)zzr;zf deeﬁ(w)cot}{—)j dt’e't f(t')
0 2T/ Jo
(4.11

Figure 2 shows|p® ()| evaluated using Eq¥4.9) and

(4.17). To compare our results with those of Berman and

co-workerd®! who assumed an initial product state of can-
tilever and bath, the inset of Fig. 2 shoys\> (t)| for a
Gaussian initial state of the cantilevéfo obtain these re-

tionaf*®’ for arbitrary coupling strengtlx to the bath and
for arbitrary temperatur&. The advantage of this method as
compared to Ref. 11 is that no master equation is used and
that there is no restriction on the number of basis functions
used to numerically integrate the problem.

The reduced dynamics of the cantilever obtained with the
influence functional is given by

PSS)(Zf Zt :t)—J dzdz Jsg(2zs,2¢ ,1,2,2] ,to)

(©)

X peg(Zi,Z] ,to), (5.1

where the influence functional is

Joo (2,27 42,2 ,to)=f DzDz' expiSs¢[2,2']), (5.2

s,s' ==, and the action is defined by

sults we evaluate the path-integral formulas in Appendix B
with t,=0 instead of taking the limity— —o.) If we com-
pare the main part of Fig. 2 with the inset the strong depen-
dence on the initial conditions is evident. The slower decay
and more pronounced oscillations shown in the inset are a
consequence of the oscillatory relaxation of the cantilever to
its thermal equilibrium state if one starts with an initial prod-
uct state of cantilever and bath. On increasing the coupling
«, the oscillatory behavior becomes less visible since the
cantilever relaxes immediately to its thermal state.

115419-5
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This form of the action is only valid for an Ohmic bath. independent, normalization constait), which can be ob-
Furthermore,K(7) is the real part of the bath correlation tained from the normalization condition
function

K(7)=Re(X(X(0)), (5.4 2 f AResdRe=00=1 (513

whereX(t) =2, c X (t). Finally, The Gaussian form of the expressions leads to a final reduced
density matrix of Gaussian form if the initial density matrix
is Gaussian, which is true for a coherent state. Therefore we
deal with Gaussian wave packets also in the dissipative case.
(5.5  The explicit formulas are discussed in detail in Appendix B,
where the solution for the reduced dynamics is obtained
starting from a Gaussian wave packet at titge We then
take the limitt;— —o such that the information about the
initial state is lost at time=0.

We will now give analytical expressions of the density
¢ matrix for the diagonal and off-diagonal elements with re-
sss,[R,r]:sgS,[R,r]—af drR(7)r(7) spect to the spin degree of freedom. Let us first discuss the

to result fors=s’:

1.2 1 ) 1
EZ (T)—EZ (7)+ nsf(T)Z(T)+§6(T)S

t
sg[z]=J d7
to

is the bare action without oscillator bath.

The action can be simplified further by introducing rela-
tive coordinates defined bg=(z+2z')/2 andr=z—2'. The
action is then found to be

i [t t

—| dr| dr'r(DK(7—7)r(7"), (5.6 1 1

+2Jto T . 7' r(n)K(r—7")r(7") (5.6 p DR t)= ﬂaRex4—ﬁ[R—xs(t)]2
with
1, .
t . . ——r +|rxs(t)}, (5.19
sgs,[R,r]=f dT(R(T)r(T)—R(T)r(T) 20°
to

where the final coordinates have been replaceR&yR; and
r=r;. The widths of the Gaussian peaks are independent of

1
Tt (DR(7)(s=8)+ Enf(r)r(r)(s+s ) the spin. The width in th& direction is given by

. (5.1

+16(7')(S—S’)] (5.7 Z—fﬁd J i
5 . ‘ OR= . wJe(w)COo o7

In the next step, the action is expanded around the classig increases with temperature. This is because the cantilever
cal path. The classical equations of motion can be found byosition suffers more thermal fluctuations. The width intthe

minimizing this action and read direction is found to be
R(7)+ aR(7)+R(7)=Fg(7), (5.8) 1 (o
R —= fo dewz\]eff(w)cot?’(% . (5.16
- . g
r(r)—ar(r)+r(r)=F.(r), (5.9 '

Note that as is well known the momentum width diverges
1 R A , , with the cut-off frequencywc which was defined after Eq.
Fr(m)=5nf(n)(s+s H'L dr'K(r—7")r(r"), (2.9). That is why we kept the dependence on the cutoff in
0 (5.10 this integral. The spin dynamics and the probability distribu-
tion of the cantilever will not depend on the cutoff. In con-
F.(7)=npf(r)(s—5), (5.1 trast toog, o, decreases with temperature; this is natural
since the cantilever gets closer to a classical oscillator as
with classical solution®;(7) andr(7), respectively. Note temperature goes up. The temperature behavior of these two

that the solutions are complékand the dependence 818’ integrals can be read off in the limit of smatk<1, viz.,

of all these quantities has been suppressed. The classical so-

lutions, which are given in Appendix B, are linear in the 1 1 1

boundary values Ry, ry, R;, and r;. Therefore, oR~ =~ ECOI"( ﬁ) (5.17
r

Sso[Rei,rel] is a bilinear form in these variables. We obtain

The Gaussian wave packets are moving according to

1 .
Jss’(Rfvrfat;Riari-tO):Nt) expliSsy[Rer rel),  (5.12 .
( G S wg(t—t)]
L _ X{(t)=7s| dt’e” (@) —— = (1),
where all the contributions from the fluctuations around the 0 WR

classical path are contained in the time-dependent, but spin- (5.18
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FIG. 3.|p(©(R,r,1)| for a time series in the steady-state regime

t,=988. The units have been chosen such that both the natural

frequencyw, of the cantilever and its harmonic oscillator length are
equal to 1.Ty=27/wy, «=0.006, andT =100; the other param-

eters are as in the caption of Fig. 2. The interference fringes are due

to the driving.

which depends on the spim The oscillator frequencywg
=\J1—(a/2)? is renormalized due to the coupling to the
bath. Furthermorex4(t) is the solution of the coordinate of a
classical dissipative driven harmonic oscillator with a spin-
dependent driving forceysf(t) starting from the initial con-

ditions x4(0)=0 andks(O):O. So the result becomes very
clear, because the classical solution is well known to be an
oscillating function, which goes through a transient regime
and fort> 1/« the amplitude of the oscillation saturates at a
finite value. The oscillation is perioditbut not necessarily
sinusoidal in time with unit period To=2%/wy). Conse-
quently, fort>1/a the density matrix will show a generic
steady-state behavior independent of the details of the initial
preparation of the system.

The density matrixp{S'(R,r,t) behaves quite differently
with respect to the coordinatésandr. As a function ofR,
pQ(R,r,t) is a Gaussian distribution with a standard devia-
tion o and averagéR(t))=x(t). On the other hand(t)
is the velocity of a classical oscillatpsee abovg it shows
oscillatory behavior irt andr superimposed on the Gaussian
envelope with widtho,; see Figs. 3—6. Thus, the off-
diagonal element$g§)(z,z’,t) (z#2') exhibit an oscillat-
ing behavior int. However, this should not be confused with
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0.2
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t=ty +0.05 Ty

-5 0 50
R

t=tm +0.15 T,

-5 0 50
R

t=tm +0.25 T,

-5 0 50
R

FIG. 4. |pO(R,r,1)| for a time series in the steady-state regime
starting at timet,,, at which the two peaks are not separated, e.g.for «=0.012 andT = 100.
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FIG. 5. [p(O(R,r,1)| for a time series in the steady-state regime

=ty
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a coherent oscillation, which is not expected in this long-for «=0.012 andT =50.
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time limit. The oscillation is a consequence of the external t=tm t=tm +0.05 T
driving f(t) [i.e., frequency modulatiog(t)]. The diagonal os
elementgboth ins andz) p{(z,z,t) do not show such an ) : 03
oscillation. 0 - 0 . .
The behavior okg(t) can be illustrated by approximating -05 . -0
f(t) by its primary oscillation amplitude:
. . . -50 0 50 -50 0 50
f(t)~Tfysin(t) + (higher harmonics (5.19 R R
where t=ty +0.1 T, t=tm +0.15 T
4 €
f0=—(i [E(— ¢dle?)—K(—p3/e?)].  (5.20 05 05
o e
Here, K(x) and E(x) are the complete elliptic integrals of e e
the first and second kintf.One obtains
cogt) cof wgrt)  Sin(wgt) 50 0 A =50 0 50
- _ oY (a2t R R
Xs(1) 77st< " +e " + Zom
t=tyy +0.2 T t=ty +0.25 T,
+ (higher harmonics (5.21) = g = 0
This solution shows the main features of the spin-dependent 0.5 L
separation x¢(t), namely, the transient behavior and 0 ‘ . 0 ‘ .
the steady-state oscillationxg(t)~ — psfocosf)/a. It is 05 05
interesting to notice that the average cantilever motions
are exactly in opposite phaséshift by ) for spin up 50 o0 50 50 0 50
(s=+1) and down §=—1). This was also concluded from R R

the numerical simulation presented Refs. 10 and 11. Thus,
the MRFM can be used as a quantum measurement devicfe
i.e., to detect the state of the spin; see below. Therefore, i

FIG. 6. |p(O(R,r,1)| for a time series in the steady-state regime
]p'r a=0.012 andT=10.

we start initially with the two spin components populated,

p.(0),p9 (0>0, thenp(R,r,t)=p', (0)pL(R 1Y)
+p (0)p©) (R,r,t) will show two peaks moving in oppo-

site directions as time goes on; see discussions above and
Figs. 3—6. It should be stressed that to separate the two peaks

with sufficient resolution, the widths of the peaks, Eg15),
should not be larger than the maximum separatipfy/ «;
see Eq.(5.2]). Clearly, this criterion restricts the maximum

operation temperature of the device. Figures 3—6 show the

typical behavior of the density matriX®)(R,r,t) of the can-
tilever for pg(O)z 1/2 for s,s' =+ as initial state. As the
coupling to the environment increases, the distance be-

tween the peaks shrinks and they are harder to distinguish
P 4 d héé s’ can be observed only in the transient regime. The decay

see Figs. 3 and 4. A similar behavior is observed as t
temperature increases with fixed; see Figs. 5 and 6.
Now we turn to the off-diagonal elemends- —s’:

O (R )= ———expl — ——[Rei 9(1) = —=r2
o 2moR 207 207
+f§s(t)—f(t)+iftdt’E(t’)], (5.22
0
where

ﬁs(t)=27]sf:dw\]eﬁ(w)cot%( %)

xftdt’f(t’)cos{w(t—t’)] (5.23
0

and

t()=27s f Oxdwaeﬁ(w)CotI'< %)

Xftdt’f(t’)sir[w(t—t’)]. (5.29
0

In ther direction,p{” (Rr,t) has a Gaussian shape cen-
tered atg“s(t)/cr,2 with width o, . In the R direction, it is an
oscillatory function imposed on a Gaussian envelope with
width . Overall, the functiorp{?)(R,r,t) decays witht
in the same way as shown in Fig. 2, i.ﬁ(sg,)(R,r,t) for s

is described by the functiohi(t); see Eq(4.11). Note that a
trace over the cantilever dynamics leads us back to the re-
sults obtained in a much simpler way in Sec. IV.

VI. MRFM AS A QUANTUM MEASUREMENT DEVICE

One of the conclusions of the analysis presented here is
that the cantilever oscillates with the same amplitude for
both initial spin statesup and down Probing the amplitude
of the cantilever vibration can only tell the absolute value of
the spin in the direction dB.4(0), but not itssign. However,
the oscillations for the initial spin up and down states are
completely out of phas@hase difference ofr); see Sec. V.
This fact was also noticed by Bermanal1°in their numeri-
cal simulations. Hence, there is the possibility to use the
MRFM as a quantum measurement device, i.e., to detect the
direction of the spin with the MRFM by probing thelis-
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crete relative phases of the cantilever oscillations. In the|¢(t)|<6f_ (ii) The time scales of the spin dynamics and the
quantum theory of measurement, this falls into the categorgantilever dynamics are well separated ¥ 1) such that the
of the indirect quantum measurement schéfnn such a  Born-Oppenheimer approximation is justified. Yet, the finite
scheme, the quantum object supposed to be measured rigtes of change in the external driving and the cantilever
coupled to another quantum system, the so-called quantugpsition will induce spin-flips. The spin-flip rate can be esti-
probe. The classical measurement device then detects thgated by the Landau-Zener transitiGediabatic transition

quantum probe instead of probing directly the quantum obrate!®31-34For this purpose, we rewrite Eq®.4) and(2.8)
ject. In our case, the quantum object is the spin, the quantunp the form

probe corresponds to the cantilever, and the classical mea-

surement device can be, e.g., the fiber-optical interferometer. 1 1

A conceivable scheme to measure the relative phases of the Hiz()==5F(o,— 5€, 0y, (A1)
cantilever oscillations is to use a reference spin which is

prepared in a definite known state, for example, by applyingyhereF (t)= ¢(t) + 2 7(z(t)). The back-action of the canti-

a strong magnetic field in a desired direction. The two Sigieyer has been accounted for by its time-dependent average

nals from the reference spin and the spin in an unknown statgssition, and the contribution from it will be estimated below

are superposed to determine the relative phase of the Uy 5 self-consistent way based on the results in Sec. V. The

known spin. probability that the spin-flips against the effective magnetic
field Beg(t) during one periodi.e., 27/ wg) is then given by

VIl. CONCLUSIONS 5

We have studied the CAl-based MRFM as a high- PLZzeX%_WEL» (A2)
resolution tool to detect single spins. The quantum dynamics v

of the spin-plus-cantilever system was analyzed in terms of . .
Pin-p _ > ~(S) yzed where we have takew=maxF(t)| to estimate the worst
the reduced density matricep,>(t) (for the spin and case.

,B(C)(t) (for the cantilevey, in the presence of coupling to the It follows from Egs.(2.5) and(5.21) that
environment. Using an effective bath model, we were able to

determine the dynamics of the spin during the measurement . d . 7?
process. Our results remain valid at all temperatures as long ~ ¥<max ¢(t)|+2nma>%&(z(t)>’ =¢ot+2_~fo.
as the adiabatic approximation is satisfied. We have evalu- (A3)
ated the influence functional for the combined system of spin

and cantilever to obtain the quantum dissipative dynamics ofherefore, assuming typical values for the parametegs,
the cantilever. These results are valid for all temperatures and 1000, €, ~400, »~1, anda~0.001, we haveé,~1 and
coupling strengths. Finally, we have proposed that the

MRFM can be used as a quantum measurement device, i.e., ef

not only to detect the absolute value of the spin but also to Pu<exg —m——————|~10""°. (A4)
detect its direction. bot2n7Tola

The dissipative dynamics of an open quantum system i§ote that the back-action of the cantilever is stronger for
sensitive to the low-frequency behavior of the spectral dengrger Q factors of the cantilever@=1/a) since the maxi-

sity of the environment. While the Ohmic model §8.9)is  mum velocity of the cantilever increases with @efactor.
a plausible model, it will be worthwhile to identify the

sources of the environmental fluctuations and construct a
physical model of the environment starting from a more mi-

APPENDIX B: PATH-INTEGRAL FORMULAS

croscopic theory of the cantilever. In this appendix we will fill in some of the details left out
in Sec. V. It is convenient to defing=a/2 as the friction
ACKNOWLEDGMENTS constant.

] ) ) ) The classical solutions to Eg&.8) and(5.9) are given by
We would like to thank V. Cerletti, F. Meier, and particu-

larly F. Marquardt for helpful discussions. Our work was 1
supported by the SKORE-A program, the Swiss NSF, the r(7)= S wm(—tg)]
NCCR Nanoscience, and the eSSC at Postech. H.G. and M.- R 0
S.C. acknowledge the support by KIAS, where part of the +[ri—rp(t)Isin wg( T_to)]ev(fft)}ﬂp(,),
work was done. M.-S.C. was supported by a Korea Research

Foundation GrantKRF-2002-070-C00029 (BD)

{risin wg(t—7)]e"" ')

APPENDIX A: ESTIMATION OF THE SPIN-FLIP RATE Re(7)= 0] {RisiM wr(t—7)]e” ¥(7=to)
0

SII’[wR(t—
The cyclic adiabatic inversion scheme implies two basic ) )
assumptions(i) The variation of the external driving(t) is TR~ Rp(D]sifwr(7—1o) ] FHRy(7),
slow enough to allow for an adiabatic approximatiri.e., (B2
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where e~ (t+to) t t
B(t)= —f d7'sif wg(t—17)]
7 Sin[ wg(t—t
rp(r)=f d7' G (77 )F (1), (B3) mlor(t=to)]7t o
fo XK(7—7")sifwr(7 —to)]e”™* ™), (B13
Rp(’]’):f d7'Gr(7— 7" )Fgr(7'), (B4) 1 e 2o
to C(t)= —n2 f de d7'sinf wr(t—17)]
and the Green’s functions are defined by 2 siffwr(t=to) /o Jo
_ sin(wg7) XK (7= 7")sif wg(t—17")]e"" ™), (B14)
Gr(m)=06(7)e 7"———, (B5) _
R as(t) =x(t) —K¢(t)x(t), (B15
Sin(wRT)
G,(r)=®(r)e”w—. (B6) a;(t)=N(t)x(t), (B16)
R
The infl functional fos’ =s is f T
e influence functional fos’ =s is found to be X()= USJ A7 G r—7)E(1"), (B17)
Jso(Re 1, R i, to) ‘o
IND] (A =ns| dro.G N B18
= o qul[Kf(t)Rfrf‘f‘Ki(t)Riri_L(t)Rirf X(T)—ﬂs . T4, R(T_T) (7- ) ( )
0
—N(t)Rfri+ai(t)ri+af(t)rf]—A(t)rf2 In all of these expressions, the dependencdphas been
5 suppressed.

—B(O)rri—C(Or{}, (B7) Let us now discuss the solution for the density matrix. At
where the functions appearing in the influence functional aréime t=to we start in a product state between the cantilever
all real and defined by and bath. The cantilever density matrix is assumed to be a

Gaussian wave packet with a widthatt=t,,
K¢(t) = wrcof wr(t—to)] =, (B8)
1 1
C) 2, 12
Ki(t)=wgrCco t—to) ]+ v, B9 2,2’ tg)= exp ——(z°+z .
i(t)= wrcof wr(t—to) ]+ (B9) Pl 0) o p( 402( )

wge” Y"1 (B19)

L(t)= ——, (B10)
sinwg(t—to)] One could start from a more general initial state, but we
Ai—to) will later take the limitto— —, such that all the informa-
N(t)= .“’Re (B11) tion on the initial state is lost completely at tihe0. The
sif wr(t—to)] experiment starts at time=0 by switching on the magnetic
field. At this time the cantilever has interacted with the bath
L for a very long time and is in equilibrium with the bath, i.e.,
Alt) = 2 Sir? _ dr | dr'sifwg(7—1o)] not any more in a product state.
siffwr(t—to)]/to  Jto . . )
The general solution for the diagonal elemenISpéﬁ,
XK(7—7")sin wg(7 —tg)]e?"" ™), (B12)  starting from this initial condition is
|
IN(D)| 20 L2(t)
PRy 1y t)=—== 2 o rf| —A(t)+| 2BX (1)~ 8A(C(t) — —— |0

—4{AMDK() +L(O[B(HK;(H)+ C(t)L(t)]}U4) +ir{as(t) —4la(t)B(t) — 2a¢(t)C(t)]o?

+4K (D[ ag(H)K;(t) +a(t)L(1) ]o*} +iRer K (t) +4[ 2C()K¢(t) +B(t)N(t) o
/ D(t)], (B20)

D(t)=1+8C(t)o?+4K2(t) o™, (B21)

+AK (O[K(DK; (1) — L(ON(D]o*} = 2[a;(t) = N(t)R¢]?0?

where
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In the limit t,— —o° we obtain the final result presented in E§.14).
The influence functional fos’ = —s is found to be given by

_ N[ [
JS,*S(RfvrfitRiariatO): 2 exp !

Kf(t)Rfrf+ Kl(t)erl_L(t)erf_N(t)Rfrl+Af(t)Rf+A|(t)R|+ fthE(T)
to

|

xex — A(D)r2—B(t)r;— C()r2+b;(t)r+by(t)ri+b(t)], (B22)

where t t
_ b(t)=—A<t)y2<t>+y<t)f dr | dr'y(7')
Ar(D) =y (1) = K;(D)y(1), (B23) o o .
sifwr(7—tg)Je” 777
Ai(t)=L(t)y(1), (B24) XK(r=7') ZE{LR(:—tO)]
bf(t)=2A(t)y(t)—Jtdrftdr’y(r') o L o
, , —EftodetodT y(nK(r—=7")y(7"), (B27)
| sifwr(T—tg)]e 777 .
*K(r=7") siF;{wR(i—to)] - (529 y(r>=2nsf d7'G,(r—7)f(1), (B28)
to
_ t t , , ) r
bi(t) =B(t)y(t) - ftodrﬁodf y(7') y(T)zznsftodT'aTG,(T— ) (7). (B29)
siff wg(t—7)]e”( 10 This leads to the followin | ion f -
K(r—1' : B26 g general expression for the off
XK(r=r) sif wgr(t—to)] (820 diagonal elements g5 :
L2(t
pg?ls(Rf,rf,t)=|3%|- é‘(’t)exp{ [rf(—A(t)—i— 2B2(t)—8A(t)C(t)— 2() o= 4{A(DKZ(D) + L(D[B(H)K;(1)

+COLO o | +re{bs(t) +[—4B(1)bi(1) +8bs () C(1) + A(t)L(1)Jo?+ 4[A (D) B(DK (1)

+bi(DKF(D) +2A () C(HL (D) + bi(OK (DL (1) o} +iRr ({K (1) + 4[2C(HK (1) + B(ON(t) ]

+AK (O[K (DK (1) = LOND Jo*H HIR{ A1) +8A(() C(1) o+ 4K (D[ Ar(DK; (1) + A(DN(D) ]o}

t
/ D(t)+iJ dTE(T)-i—b(t)].
to

(B30)

A2
F2b(0) - INOR 202~ 20 02 A (DIADC( + b (DK ()]0

The reduced dynamics of the spin alone is found by tracing out the cantilever coordinates. The result is

( C(t) | Au(t)bi(t) AZ(t) o’ [t
(S =, — A2 + + — — A K. A 2

Epgs)_s(O)exp(—r(t)+iftdre(r)). (B31)
to

The decay ratd’(t) [see Eq.(4.11)], can be obtained in the limty— — after a straightforward but tedious calculation. In
the same limit, we get the result for the density matrix presented iN&E2Q).
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