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Recently, we proposed a new mechanism to generate a dc current of particles at zero bias based on
a noble interplay between coherence and decoherence [S. W. Kim and M-S. Choi, Phys. Rev. Lett.
95, 226802 (2005)]. We showed that a dc current arises if the transport process in one direction is
coherent while the process in the opposite direction is incoherent. Related issues such as the first
and the second law of thermodynamics, the law of detailed balances, and the validity of the plane
wave description, will be discussed in detail.
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I. INTRODUCTION

Recently, we presented the so-called decoherence-
driven quantum transport [1], where a mechanism to
generate a dc current of particles at zero bias was pro-
posed based on an interplay between coherence and de-
coherence. In Ref. [1] we concentrated on presenting the
basic working principle and confirming it by showing a
simple example. We believe it is worth discussing sev-
eral issues related to its physical implications and related
issues such as the first and the second law of thermody-
namics, the law of detailed balances, and the validity of
the plane wave description, in a slightly informal way.

II. BASIC PRINCIPLE

First, we briefly summarize the basic principle of
decoherence-driven quantum transport. A dc current
will arise if the transport process in one direction is co-
herent while the process in the opposite direction is in-
coherent. One can easily check the idea by noting that
the transmission probability of coherent transport varies
with the relative phases of multiple paths, which does
not affect incoherent transport. The important ques-
tion is then how to realize such spatially anisotropic,
coherent/incoherent transport processes. The scheme
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of our implementation is quite general, but for definite-
ness, here we take a specific example based on the atomic
Michelson interferometer.

Let us consider an atomic Michelson interferometer [2–
5] and two reservoirs, 1 and 2, of two-level atoms at the
ends of the two input/output channels of the interferom-
eter (Fig. 1). The atoms from a reservoir enter the in-
terferometer, experience scattering and/or interference,
and are either reflected back to the original reservoir or
transmitted to the other reservoir. In addition we have
an important component, the microcavity (C) between
reservoir 2 and the atomic beam splitter (BS) [2–5]. The
cavity is set to be resonant with the level splitting ∆ of
the two-level atoms so that atoms entering the cavity in
the ground state come out of the cavity in an excited
state. Therefore, when entering the interferometer, the
atoms from reservoir 2 are in an excited state while those
from reservoir 1 remain in the ground state. This dif-
ference in the energy state between atoms entering the
interferometer can cause a significant difference in the
coherence of their center-of-mass (CM) motions in the
interferometer.

To see this, let Lτ = vτ , where v is the velocity of the
atoms and τ is the lifetime of the excited energy level.
Provided that Lτ < 2L, with L being the lengths of the
arms (i.e., the paths from the atomic BS to the mir-
rors) of the interferometer (the lengths of the arms are
assumed to be equal), an excited atom in the interfer-
ometer will relax back to its ground state by emitting a
photon [Fig. 1(b)]. In the ideal case, the photon enables
us to locate the atom definitely on one of the two arms
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Fig. 1. (color online) Scheme based on the Michelson in-
terferometer. 1 and 2 represent reservoirs. The (blue) dashed
and the (red) solid lines represent the trajectories of the
ground-state and excited atoms, respectively. The horizon-
tal and the vertical thick lines are mirrors, and the titled
thick lines in the middle an atomic beam splitter. The box
with “C” is the microcavity. (a) The coherent process: An
atom from reservoir 1 undergoes constructive interference and
reaches reserver 2 with unit probability. The cavity does not
affect the transmission of this atom. (b) The incoherent pro-
cess: An atom from reservoir 2 is excited at the cavity and
spontaneously emits a photon within the vertical path. The
atom is then transmitted to either reservoir with equal prob-
ability 0.5.

of the interferometer. The excited atoms, thus, never ex-
perience an interference through the Michelson interfer-
ometer. In this sense, the CM motion of the atoms from
reservoir 2 is incoherent. Furthermore, starting from the
just located arm (whichever it is), the atom is transmit-
ted to reservoir 1 with probability 0.5 and reflected back
to reservoir 2 with probability 0.5 (we consider a 50:50
BS); see Fig. 1(b).

On the other hand, the atoms from reservoir 1
(ground-state atoms) do not allow such relaxation and
will experience coherent interference as long as Lφ À 2L,
where Lφ is the coherence length of the CM motion of
ground-state atoms; see Fig. 1 (a). Due to construc-
tive interference, an atom from reservoir 1 is perfectly
transmitted to reservoir 2; see Fig. 1 (a). Comparing
these two transport processes, one can see that 50 %
of the incoming atoms contribute to the net dc current.
Namely, when the currents from reservoirs 1 and 2 are
equal, I1 = I2 = I, the net current from 1 to 2 is given

by

I12 = I1 − 0.5I2 = 0.5I . (1)

The maximum current in Eq. (1) can be obtained in
the ideal case implied in the above arguments. Several
requirements should be satisfied for such an idealistic sit-
uation. Otherwise, as we discuss now, the current will
be diminished. Firstly, only a fraction of the atoms from
reservoir 2 may be excited by the cavity. Then, the cur-
rent will be reduced to

I12 = I − 0.5PexI − (1− Pex)I = 0.5PexI . (2)

Secondly, not all the excited atoms entering the interfer-
ometer may relax to the ground state inside the interfer-
ometer. The probability Pτ for an excited atom to relax
to the ground state inside the interferometer is given by

Pτ ≈
∫ 2L/v

0

dte−t/τ , (3)

ignoring the distance between the beam splitter and the
cavity. If Pτ is significantly less than 1, then the current
in Eq. (1) is reduced to

I12 = I − 0.5PτI − (1− Pτ )I = 0.5PτI . (4)

Thirdly, even if the excited atom relaxes inside the inter-
ferometer and a photon is emitted, the atom cannot con-
tribute to the net current unless the photon gives infor-
mation about which path of the interferometer the atom
takes. For example, if the wavelength λ of the photon is
comparable to or larger than the size of the interferom-
eter L (λ & L), then one cannot get enough information
about which path the atom takes, and the CM motion of
the atom still remains coherent. Such an effect of insuf-
ficient information about the path can be described by
assigning the states |a〉 and |b〉 with the photon emitted
from the vertical and the horizontal arms, respectively.
〈a|b〉 = 0 implies that the which-path information is suf-
ficient, and one can locate perfectly the atom on one of
the two arms [6–8]. Finite 〈a|b〉 will reduce the current
in Eq. (1) as

I12 = 0.5(1− Re〈a|b〉)I . (5)

We note that the decoherence in our scheme is of a partic-
ular type and is clearly distinguished in its role from the
usual decoherence of the CM motion of the atom when
the atom keeps its internal state (either ground or excited
state). It is obvious that in our scheme, the usual addi-
tional decoherence always reduce the net current while
it is not necessarily true in quantum pumps. The point
here is that the usual decoherence is spatially isotropic
while the decoherence of our concern is anisotropic.

The overall effects of these non-ideal situations can
then be summarized as

I12 = 0.5PexPτ (1− Re〈a|b〉)I. (6)

Also, to avoid the back reaction of the photon to the
atom, the momentum of the CM of the atom pCM must
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be sufficiently larger than that of the photon h/λ. A
more rigorous mathematical derivation of Eq. (6) can be
found in Ref. [1].

III. WAVE PACKET DESCRIPTION

In the above discussions, we described the scattering
and the interference of atoms in terms of plane waves
with a definite momentum within a stationary scatter-
ing formalism. Some of readers may doubt the validity
of the description because the decoherence process in our
scheme should locate the atom within the interferome-
ter, and the subsequent scattering process of the located
atom is separated in time from that of the incoming
atom. Therefore, one may think that for the incoher-
ent transport process in question, a description in terms
of a wave packet within the time-dependent scattering
formalism would be required. Indeed, one can think of
the incoherent transport process in three steps: For ex-
ample, in the scheme based on the Michelson interfer-
ometer, (i) the incoming wave packet of an excited atom
scatters off the BS, (ii) the scattered wave packet un-
dergoes the decoherence process, relaxing to the ground
state and emitting a photon, and finally (iii) the packet
of the ground-state atom (starting from either arm of the
interferometer) scatters off the BS.

It has been well established in scattering theory [9]
that since the plane waves form a complete basis as
stationary scattering states, the stationary description
in terms of the plane waves is equivalent to the time-
dependent description for arbitrary scattering states
(e.g., Gaussian packets). Furthermore, the decoherence
in the CM motion of the atom can be described by the
entanglement of the orbital state of the CM motion of
the atom and the photonic state [6,7]. Therefore, as long
as the scattering matrix is not sensitive to the wave num-
bers in the range of interest, the description (i)–(iii) is
equivalent to that given above, where we took two sepa-
rate stationary scattering processes of plane waves with
the initial conditions of the latter given by a certain clas-
sical probability (e.g., for a 50:50 BS, 50 % for starting
from either arm).

IV. THE FIRST LAW OF
THERMODYNAMICS

In our scheme, the energy is, of course, indispens-
able for exciting the atoms in the microcavity. It should
be emphasized, however, that this energy does not con-
tribute directly to generating the dc current of the CM
motion of atoms. The energy absorbed by the atom fi-
nally returns to the environment via spontaneous emis-
sion from which only the which-path information is ex-
tracted. In this sense, the energy is not a crucial ingre-
dient for generating a dc current. Even though a tiny

momentum transfer from the emitted photon to the CM
of the atom is considered, it can be averaged out be-
cause the direction of the spontaneously emitted photon
is random. The energy consideration given above, how-
ever, raises a subtle problem.

Since the dc current generation of this scheme does not
require any energy, it gives rise to no density difference
arising from the current, which leads us to the conclusion
that our pump cannot operate between reservoirs with
finite sizes. We believe this causes no problem once the
reservoir is assumed to be infinitely large, as is usual.

V. THE SECOND LAW OF
THERMODYNAMICS

At this point, it will be interesting to address the ques-
tion: Does this spontaneous dc current violate the second
law of thermodynamics? Consider four atoms, two from
each reservoir. One will end up with (on average) three
atoms in reservoir 1, but one in reservoir 2, which corre-
sponds to a decrease in the entropy by log(3/2). How-
ever, the increase in entropy induced by the decoherence
is enough to compensate for this decrease and give a net
increase in total entropy. To see this, note that complete
decoherence makes the off-diagonal components of the
density matrix zero, which gives rise to an increase in
the entropy by log 2. Therefore, the net increase in total
entropy is (1/2) log 2−(1/4) log(3/2) ≈ log 1.3 per atom.

In another sense, the entropy increase from decoher-
ence is regarded as that associated with information en-
tropy. This issue has a long history from J. C. Maxwell,
the so-called Maxwell’s demon (MD) [10]. The MD is
a hypothetical being of intelligence, but molecular order
of size, imagined to illustrate the limitations of the sec-
ond law of thermodynamics. Leo Szilard introduced his
famous model in which an intelligent being operated a
heat engine with a one-molecule working fluid [11]. The
Szilard model seems to provide realization of the MD
leading to a breakdown of the second law of thermody-
namics. It has been proven, however, that in Szilard’s
engine, the entropy of the environment really increases
by erasing the memory on the location of the molecule
or by the measurement process [12]. In our pump, the
measurement process takes place once the spontaneous
decay occurs, which is ascribed to an increase in the en-
tropy by log 2, where “2” obviously originates from the
two possible classical paths of the atom [13]. It is noted
that without the interferometry between the reservoirs,
the spontaneous decay itself would not make any entropy
available to generate the dc current.

VI. DETAILED BALANCE

Detailed balance tells us that the transmission prob-
ability from one side to the other should be equivalent
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to that of the opposite direction. To satisfy the law of
detailed balance, one needs two assumption: (i) the sys-
tem should be in equilibrium, and (ii) the system should
have a microscopic time-reversal symmetry. For example
the so-called Brownian motor [14,15] breaks the equilib-
rium condition for generating a dc current while the so-
called adiabatic quantum pump [16] lacks time-reversal
symmetry. We think that our pump satisfies neither of
these. The populations of the internal states of the atoms
are not described by equilibrium distribution, i.e. the
Boltzmann factor due to the existence of the Rabi ex-
citation induced by driving in the microcavity. Sponta-
neous emission obviously breaks time-reversal symmetry.
In the viewpoint of detailed balance, it is no wonder that
a dc current is generated.

VII. OTHER INTERFEROMETERS

In the above discussion, we have exploited Michel-
son interferometry to demonstrate a decoherence-driven
quantum pump (the ring interferometer was also pre-
sented in Ref. [1]). It is worth noting that for the well-
known Young and Mach-Zehnder interferometers it is
hard to efficiently realize such an idea. For a Young’s
double-slit interferometer, the intensity of the atomic
beam at the center of the screen decreases when which-
way information is acquired. However, the total inten-
sity of the atomic beam over the whole screen is still
conserved. If all atoms on the screen are collected to the
reservoir, a net current cannot be generated. If part of
them are chosen, one should lose atoms. For a Mach-
Zehnder interferometer an atom finally chooses one of
the two exits without backward scattering so that the
total transmission probability from one reservoir to an-
other is not changed even when decoherence takes place.
If one exit is coupled to the reservoir and the other opens,
atoms are also lost.

VIII. SUMMARY

In summary we have proposed a new mechanism to
generate a dc current by using a noble interplay between
coherence and decoherence. A specific scheme of imple-
mentation has been presented based on the Michelson in-
terferometer. The physical implications and the related
issues were discussed.

A coherent superposition of states has more informa-
tion (or equivalently less entropy) than incoherent ones.
In some sense, this extra information has been exploited
to generate a dc current. Thus, it will be interesting
to compare our work with another striking proposal by
Scully et al. [17], a quantum heat engine operating from
a single heat bath prepared in a certain coherent super-
position and with a greater efficiency than a classical
Carnot engine. The idea presented here may hopefully

shed light on a deeper understanding of the nature of de-
coherence and on the subtle boundary between classical
and quantum physics.
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